لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
عیب یابی موتور های الکتریکی
تشخیص عیب و رفع آن در ماشینهای الکتریکی اهمیت خاصی دارد . به همین دلیل این مبحث درکتاب حاضر در یک فصل جداگانه آمده است . تشخیص عیب در اولین مرحله کار تعمیراتی است و رفع آن در مرحله بعدی قرار دارد .
یافتن عیب موتورها را می توان به تشخیص نوع بیماری یک فرد توسط پزشک تشبیه کرد تا بیماری را به درستی تشخیص ندهد نمی تواند برای بهبود بیمار قدمی بردارد و تمام نسخه هایی که می نویسد ، تاثیری در بهبود وضع بیمار نخواهد داشت .
به همین ترتیب اگر عیب اصلی ماشین شناخته نشود یا ماشین را نمی توان تعمیر کرد و یا اگر بدلیل وجود آن عیب ، عیب دیگری پیدا شود و ما آن عیب دومی را بر طرف کنیم موتور مجدداً معیوب می شود و به همان حالت اول در می آید ؛ مثلاً اگر محور وتور لنگی داشته باشد ، بلبرینگ ها و بوش ها را خراب خواهد کرد . در این جا اگر ، رفع عیب اصلی یعنی کجی محور موتور – فقط به تعویض بلبرینگ ها یا بوش بپردازیم ، چون محور موتور هم چنان کج است و دوباره بعد از مدتی ، رتور بوش ها و بلبرینگ ها را خراب خواهد کرد .
کسب مهارت در عیب یابی بیشتر در اثر تجربه عملی به دست می آید نه با خواندن کتاب و جزوه اما به هر حال ، آگاهی از برخی نکات کلی و عمومی در این زمینه برای کسانی که تازه می خواهند این کار را شروع کنند ، بسیار مفید است .
البته به دلیل محدود بودن حجم کتاب و زمان آموزش در این جا فقط به ذکر مطالب کلی و آن هم به اختصار اکتفا شده است . لذا کسانی که مایل به یادگیری مطالب بیشتری در این زمینه هستند ، می توانند به منابع موجود مراجعه کنند .
برای تشخیص عیب ، روش های مختلفی وجود دارد . بعضی عیب ها را فقط با مشاهده عینی می توان تشخیص داد . تعداد دیگری از روی تغییر خصوصیات الکتریکی و تعدادی را با صدای مخصوصی که در هنگام کار تولید می کنند .
بنابرای ن نظریه عیب یابی از راههای مختلف صورت می گیرد که ما در این در بخش عیب های مکانیکی از روش مشاهده و آزمایش با دست و در بخش عیب های الکتریکی از روش تغییر خصوصیات الکتریکی برای عیب یابی ماشین ها استفاده خواهیم کرد .
به طور کلی هر وسیله الکتریکی ممکن است دو نوع عیب عمده پیدا کند : الف – عیب در قطعات مکانیکی (عیب های مکانیکی) ب- عیب در مسیر جریان (عیب های الکتریکی) .
تشخیص عیب های مکانیکی و رفع آنها
عیب های مکانیکی ناشی از خرابی قطعات متحرک و غیر متحرک است . این قطعات را که به دلایل مختلفی ممکن است خراب شوند ، باید تعمیر یا تعویض کرد .
در اینجا به برخی از خرابی ها و دلایل عمده آنها اشاره می کنیم .
شکستگی بدنه و درپوش ها (قالپاق ها) :
شکستگی بده یا در پوش ها معمولاً در اثر ضربه های ناگهانی ناشی از برخورد جسمی به ماشین یا فشار بیش از حد وسیله ای بر روی بدنه یا قالپاق های آن و عواملی نظیر اینها به وجود می آید . معمولاً حجم قطعه شکسته شده کمی افزایش می یابد و شکستگی قطعه ای مانند قالپاق در بعضی مواقع باعث به هم خوردن تعادل ماشین می شود و تعدادی از قطعات متحرک و بعضی قطعات غیر متحرک آن ، جابه جا می شوند .
برای تشخیص این عیب باید همه قسمت های بدنه و درپوش ها را دقیقاً وارسی کرد در صورت مشاهده ترک یا شکستگی در بدنه ، باید آن را در صورت امکان جوش دهیم و در صورت مشاهده شکستگی در قالپاق ها باید آنها را عوض کنیم . بنابراین ، در هر موتور معیوب باید ابتدا بدنه و در پوش ها را کاملاً بازدید کرد و در صورت سالم بودن آنها به سراغ قطعه های دیگر رفت .
خرابی بلبرینگ ها ، بوش ها و یاتاقان ها :
این قطعات در موتور دو وظیفه مهم دارند : اول ، تکیه گاه هستند و فشار وارد شده را تحمل می کنند ؛ دوم اصطکاک میان قطعات ثابت و متحرک را کاهش می دهند . به همین دلیل ، بازرسی منظم و روغن کاری و سرویس مرتب آنها نقش مهمی در کارکرد مناسب موتور دارد و امری ضروری است . تناوب روغن کاری و گریس کاری به عوامل مختلفی از جمله زمان کارکرد موثر ، شرایط آب و هوا و نظیر این ها بستگی دارد . معمولاً کارخانه های سازنده ، دستورالعمل مربوط به فواصل منظم روغن کاری ، نوع روغن گریس کاری و نوع گریس و شرایطی که موتور برای کار کردن در آن ساخته شده است را در کاتالوگ دستگاه ذکر می کنند . باید تا حد ممکن این دستورالعمل ها را به طور دقیق اجرا کرد .
در صورت خرابی وسایل یاد شده ، معمولاً موتور به سختی حرکت می کند یا هنگام کار ، لرزشی غیر عادی دارد و ممکن است صدایی غیر عادی ایجاد کند .
خرابی بلبرینگ ها ، بوش ها و یاتاقان ها به سه دلیل عمده زیر ممکن است اتفاق بیفتد :
الف – نرسیدن به موقع روغن یا گریس به این قطعات روغن کاری یا گریس کاری نامناسب .
ب – استفاده از موتور در محیطی کثیف تر از آنچه موتور برای آن ساخته شده است
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
قوس الکتریکی چیست؟
تاریخچه
در سال 1802 پتروف (V.P.Petrof) کشف کرد که اگر دو تکه زغال چوب را به قطب های باتری بزرگی وصل کنیم و آنها را به هم تماس دهیم و سپس کمی از هم جدا کنیم شعله روشنی بین دو تکه زغال دیده می شود. و انتهای آنها که از شدت گرما سفید شده است نور خیره کننده ای گسیل می دارد. قوس الکتریکی هفت سال بعد دیوی (H.Davy) فیزیکدان انگلیسی این پدیده را مشاهده نمود و پیشنهاد کرد که این پدیده به احترام ولتا قوس ولتا نامیده شود.
آزمایش ساده
اگر بخواهیم در یک روش ساده ای ایجاد قوس الکتریکی را نشان دهیم باید دو تکه کربن را روی گیره قابل تنظیم سوار نمود (بهتر است که به جای زغال چوب معمولی میله خاصی که از کربن قوس ساخته می شود و با فشار دادن مخلوط گرافیت ، کربن سیاه و مواد چسبنده به وجود می آیند، استفاده شود).
چشمه جریان می تواند برق شهر هم باشد برای اجتناب ازاینکه در لحظه تماس تکه های کربن مدار کوتاه ایجاد شود باید رئوستایی به طور متوالی به قوس وصل شود.
معمولا برق شهر با جریان متناوب تغذیه می شود. ولی در صورتی که جریان مستقیم از آن عبور کند قوس پایدارتر است به طوری که یکی از الکترودها همیشه مثبت «آند)و دیگری همواره منفی «کاتد)است.
ماهیت قوس الکتریکی
در قوس الکتریکی الکترودها در اثر حرارت سفید رنگ می شود. ستونی از گاز ملتهب رسانای خوب الکتریکی بین الکترودها وجود دارد. در قوس معمولی این ستون نوری بسیار کمتر از نور تکه های کربن سفید شده از آزمایشهای مربوط به گرما گسیل می کنند. چون الکترود مثبت دمایش از الکترود منفی بیشتر است زود تر از بین می رود. در نتیجه تصعید شدید کربن صورت گرفته و در آن الکترود (الکترود مثبت) فرورفتگی به وجود می آید که به دهانه مثبت معروف است و داغ ترین نقطه الکترودهاست.
دمای دهانه در هوا و در فشار جو به 4000 درجه سانتیگراد می رسد. در لامپ های قوسی سازوکارهای منظم و خود کار خاصی برای نزدیک کردن تکه های کربن با سرعت یکنواخت وقتی با سوختن از بین می روند، مورد استفاده قرار می گیرند. برای اینکه سایش و خوردگی الکترود مثبت به خاطر دمای بالایش بیشتر است،برای همین همیشه الکترود کربن مثبت کلفت تر از الکترود منفی اختیار می شود.
دماهای بالا در قوس الکتریکی
قوس الکتریکی می تواند بین الکترودهای فلزی ساخته شده از آهن ، مس و غیره نیز بگیرد. در این حالت الکترودها به میزان زیادی ذوب و تبخیر می شوند و این عمل به مقدار زیادی آزمایشهای مربوط به گرما احتیاج دارد. به این دلیل دمای مرکز الکترود فلزی معمولا کمتر از دمای الکترود کربنی است (2000 تا 2500 درجه سانتیگراد).
قوسی که بین الکترودهای کربن در گاز فشرده ای قرار می گیرد (حدود 20atm) بالا رفتن دمای مرکز مثبت تا 5900 درجه سانتیگراد یعنی دما روی سطح خورشید را ممکن ساخته است. معلوم شده است که کربن در این حالت ذوب می شود. دمای باز هم بالاتری را می توان در ستونی از گاز و بخاری که از آن تخلیه الکتریکی می گذرد، به دست آورد.
بمباران شدید این گاز و بخار با الکترون ها و یون هایی که با میدان الکتریکی قوس شتاب گرفته اند دمای ستون گاز را 6000 تا 7000 درجه سانتیگراد می رساند. به این دلیل تقریبا تمام مواد شناخته شده در ستون قوس الکتریکی ذوب و تبخیر می شوند. و بسیاری از واکنش های شیمیایی که در دماهای پایین انجام شدنی نیستند، با قوس الکتریکی امکان پذیر می شوند. مثلا میله های چینی دیر گداز در شعله قوس به سهولت ذوب می شود.
چگونگی ایجاد تخلیه قوس الکتریکی
برای ایجاد تخلیه قوس الکتریکی به ولتاژ زیادی احتیاج نیست با ولتاژ 40 تا 45 ولت بین الکترود ها می توان قوس را به وجود آورد. از طرف دیگر جریان داخل قوس زیاد است. مثلا حتی در قوس کوچک جریان به 5 آمپر می رسد، در حالیکه در قوس های بزرگ که در
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 105
هر سیستم انرژی الکتریکی از سه قسمت تشکیل شده است که عبارتند از :
1 ـ مرکز تولید نیرو یا نیروگاه
2 ـ خطوط انتقال
3ـ شبکههای توزیع نیروگاهها به دلایل ایمنی ،اقتصادی و منابع انرژی در مسافت دور از مصرف کننده قرار دارند و بنا به دلایل تلفات خط و افت ولتاژ ،انرژی را ما با سطح ولتاژ بالا انتقال میدهیم. و مزایای آن سطح مقطع هادی کاهش پیدا میکند در نتیجه وزن سیم مصرفی نیز کاهش پیدا میکند. افزایش بیش از حد ولتاژ نیز معایبی را در بر دارد که عبارتند از:
1ـ افزایش قیمت ترانسها در ابتدا و انتهای خط
2ـ افزایش بین هادی های خطوط انتقال و در نتیجه بزرگتر شدن دکلها
3 ـ افزایش تعداد مقرههای دکلها جهت عایق سازی
4 ـ افزایش قیمت تجهیزات ولتاژ سطح انتقال 400و230 کیلوولت و ولتاژ سطح فوق توزیع 132 و 63 کیلو ولت و ولتاژ سطح توزیع 20 کیلو ولت و 400 ولت میباشد. ولتاژ تحویلی به مصرف کننده های مختلف متناسب با قدرت مورد نیاز آن میباشد که در مصارف کم حداکثر تا 3 کیلووات با 220 ولت تکفاز و در مصارف تا 50 کیلو ولت آمپر با 380 ولت سه فاز و در مصارف تا 3 مگا وات برق 20 کیلو ولت سه فاز و در بیشتر از 3 مگا وات با 63 و 132 کیلوولت استفاده میشود. شبکه برق : هر گاه به کمک سیمکشی چندین مصرف کننده از جریان برق استفاده کنند این سیم کشی را شبکه گویندکه در طراحی شبکه توزیع انرژی باید نکاتی را در نظر گرفت که عبارتند از :
1ـ تلفات توان الکتریکی کمتر باشد .
2ـ اطمینان خوبی به نظر حفاظتی داشته باشد.
3 ـ عیب یابی شبکه سریع باشد.
4 ـ طرح تا حد امکان ساده باشد
. 5ـ ضریب بهره شبکه بالا باشد.
انواع شبکه ها:
شبکههای باز(شعاعی)
شبکههای بسته ( از دو سو تغذیه یا حلقوی)
شبکههای ستارهای
شبکه غربالی یا تور عنکبوتی:
1 ـ شبکههای باز (شعاعی):در این نوع شبکه تغذیه الکتریکی از یک نکته انجام میگیرد و از یک سو تغذیه میشود.و از تابلو اصلی توسط انشعابهایی انرژی به مصرف کننده یا تابلوهای ترسیم کوچکتر حمل میشود و این انشعابها شعاعی شکل است. معایب شبکه های باز: قابلیت اطمینان در حالت کار کمتر میباشدـ تلفات توان در مقایسه با سایر شبکه ها بیشتر است
به منظور محدود کردن تلفات توان باید سطح مقطع کابل بزرگتر انتخاب گردد. مزایا: به لحاظ سادگی ساختار قابل درک است
کلیه نواقص آن را به طور سریع ویتوان یافت و رفع کرد. ـ توان یا قدرت اتصال کوتاه به علت اینکه از یکسو تغذیه میشود کم میباشد. در جاهایی که قطع برق اتفاقی مجار نمیباشد جهت بالا بردن ضریب اطمینان شبکه از شبکههای بسته استفاده میشود شبکه های بسته از دو نوع پست مختلف تغذیه میشوند.در شبکههای حلقوی نقطه ابتدا و انتهای خط از یک منبع انرژی تغذیه میگردد. انواع خطوط انتقال : خطوط هوایی ـ خطوط زمینی مزایای شبکههای هوایی : شبکههوایی ارزانتر از سیستم زمینی است ـ با افزایش ولتاژ قیمت سیستم زمینی نسبت به هوایی افزایش مییابد. ـ خطوط هوایی از نظر تعمیرات اسانتر است و عیبیابی آن به راحتی انجام میپذیرد ـ امکان انشعاب گیری در هر نقطه بدون ایجاد اغتشاش امکان پذیر است. ـ در مناطقی که افزایش مصرف رو به رشد است یک مزیت قابل توجه است. مزایای شبکههای زمینی :
1 ـ امکان به وجود آمدن اتفاقاتی مانند اتصال کوتاه،پارگی نسبت به خط هوایی کمتر است.
2 ـ چنانکه بخواهند چند ترانس و ژنراتور در فاصله نزدیکی به هم قرار گیرند بهتر است از کابل جهت رعایت مساله حفاظت استفاده شود.
3ـ در صورتی که تنظیم ولتاژ مورد نظر باشد خط زمینی ترجیح داده میشود چون تلفات القایی در آن کمتر است. اگر فواصل هادیهای یک خط سه فاز با یکدیگر برابر نباشند اندوکتانس فازها با هم مساوی نبوده و سیستم قدرت نا متقارن میگردد یعنی در صورت اعمال ولتاژ متعادل به ابتدای خط ولتاژهای انتهایی نامتعادل خواهند بود برای رفع این مشکل از دو روش استفاده میشود که عبارتند از :
1 ـ آرایش به صورت مثلث متساوی الاضلاع
2ـ خطوط جابجا شده جهت افزایش قابلیت اطمینان خطوط انتقال انرژی با وجود هزینههای زیاد نصب خطوط انتقال دومداره از مقبولیت خاصی برخوردار است. بررسی پارامتر های مناسب در احداث خطوط : 1ـ انتخاب سطح ولتاژ انتقال
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 39
موتور الکتریکی
یک موتور الکتریکی، الکتریسیته را به حرکت مکانیکی تبدیل میکند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام میشود. این دو وسیله بجز در عملکرد، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار میکنند، اما موتورهایی که بر اساس پدیدههای دیگری نظیر نیروی الکترواستاتیک و اثر پیزوالکتریک کار میکنند، هم وجود دارند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار میگیرد، نیرویی بر روی آن ماده از سوی میدان اعمال میشود. در یک موتور استوانهای، چرخانه (روتور) به علت گشتاوری که ناشی از نیرویی است که به فاصلهای معین از محور چرخانه به چرخانه اعمال میشود، میگردد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) چرخانه و بخش ثابت ایستانه (استاتور) خوانده میشود. موتور شامل آهنربای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده میشود، اما این واژه عموماً به غلط بکار برده میشود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال میشود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد میشود. با توجه به طراحی ماشین، هر کدام از بخشهای چرخانه یا ایستانه میتوانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیت هایی را در مدارس استفاده میکنند.
موتورهای دیسی
یکی از اولین موتورهای دوار، اگر نگوییم اولین، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطهور بود، میشد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور میکرد، سیم حول آهنربا به گردش در میآمد و نشان میداد که جریان منجر به افزایش یک میدان مغناطیسی دایرهای اطراف سیم میشود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده میشود، اما گاهاً بجای ماده سمی جیوه، از آب نمک استفاده میشود.
موتور کلاسیک Dc دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور Dc به مجموعهای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی، بستگی دارد.
سرعت موتور Dc وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیمپیچی موتور یا با داشتن یک منبع ولتاژ متغیر، کنترل میشود. بدلیل اینکه این نوع از موتور میتواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای کششی نظیر لوکوموتیوها استفاده میکنند. اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبک ها و کموتاتور، ایجاد اصطکاک میکند و هر چه که سرعت موتور بالاتر باشد، جاروبکها میبایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور میشود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد میکند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا میکنند. اتصال ناقص الکتریکی نیز تولید نوفه (نویز) الکتریکی در مدار متصل میکند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین میروند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبکمیرسیم.
موتورهای میدان سیم پیچی شده
آهنرباهای دائم در (ایستانه) بیرونی یک موتور Dc را میتوان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) میتوانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. میتوانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر، جریان میدان را کمتر هم کنیم. این تکنیک برای کشش الکتریکی و بسیاری از کاربردهای مشابه آن ایدهآل است و کاربرد این تکنیک میتواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.
موتورهای یونیورسال
یکی از انواع موتورهای Dc میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را میتوان هم با جریان Dc و هم Ac بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه Ac کار میکنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور Dc میدان سیم پیچی شده به جریان متناوب وصل میشود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر میکند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان Ac سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل Dc خالص خواهد بود.
مزیت این موتورها این است که میتوان تغذیه Ac را روی موتورهایی که دارای مشخصههای نوعی موتورهای Dc هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد میشود و در نتیجه این موتورها به ندرت در صنایع مشاهده میشوند، اما عمومیترین موتورهای Ac در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده میشوند، هستند.
هنگام راه اندازی، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکت های تحت فشار فنر روی کلید گریز از مرکز دوار، به منبع برق متصل میشوند. خازن به افزایش گشتاور راه اندازی موتور کمک میکند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده، دسته کنتاکتها فعال میشود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا میسازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل میکند.
سیستم آموزش اصول ایمنی برق کشی ساختمان و روش های اندازه گیری ایمن پارامترهای الکتریکی با قابلیت شبیه سازی خطا و آموزش مدارات تک فاز ، سه فاز و سه فاز چهار سیمه جهت آموزش : امنیت الکتریکی به منظور جلوگیری از حوادث پیش بینی نشده * نحوه اتصالات زمین و اصول امنیتی برق کشی * تداخلات الکترو مغناطیسی و روش های جلوگیری از آنها * اختلالات الکتریسیته ساکن و روشهای جلوگیری از آنها * جلوگیری از آسیب های ناشی از صاعقه * بازدید و عیب یابی سیم کشی در حالت خارج از شبکه * اندازه گیری ایمن توسط تجهیزات اندازه گیری الکتریکی * اندازه گیری ولتاژ تک فاز ، سه فاز و DC * تشخیص فازهای R,S,T و ولتاژ خط * اندازه گیری مقاومت
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 27
عیب یابی موتور های الکتریکی
تشخیص عیب و رفع آن در ماشینهای الکتریکی اهمیت خاصی دارد . به همین دلیل این مبحث درکتاب حاضر در یک فصل جداگانه آمده است . تشخیص عیب در اولین مرحله کار تعمیراتی است و رفع آن در مرحله بعدی قرار دارد .
یافتن عیب موتورها را می توان به تشخیص نوع بیماری یک فرد توسط پزشک تشبیه کرد تا بیماری را به درستی تشخیص ندهد نمی تواند برای بهبود بیمار قدمی بردارد و تمام نسخه هایی که می نویسد ، تاثیری در بهبود وضع بیمار نخواهد داشت .
به همین ترتیب اگر عیب اصلی ماشین شناخته نشود یا ماشین را نمی توان تعمیر کرد و یا اگر بدلیل وجود آن عیب ، عیب دیگری پیدا شود و ما آن عیب دومی را بر طرف کنیم موتور مجدداً معیوب می شود و به همان حالت اول در می آید ؛ مثلاً اگر محور وتور لنگی داشته باشد ، بلبرینگ ها و بوش ها را خراب خواهد کرد . در این جا اگر ، رفع عیب اصلی یعنی کجی محور موتور – فقط به تعویض بلبرینگ ها یا بوش بپردازیم ، چون محور موتور هم چنان کج است و دوباره بعد از مدتی ، رتور بوش ها و بلبرینگ ها را خراب خواهد کرد .
کسب مهارت در عیب یابی بیشتر در اثر تجربه عملی به دست می آید نه با خواندن کتاب و جزوه اما به هر حال ، آگاهی از برخی نکات کلی و عمومی در این زمینه برای کسانی که تازه می خواهند این کار را شروع کنند ، بسیار مفید است .
البته به دلیل محدود بودن حجم کتاب و زمان آموزش در این جا فقط به ذکر مطالب کلی و آن هم به اختصار اکتفا شده است . لذا کسانی که مایل به یادگیری مطالب بیشتری در این زمینه هستند ، می توانند به منابع موجود مراجعه کنند .
برای تشخیص عیب ، روش های مختلفی وجود دارد . بعضی عیب ها را فقط با مشاهده عینی می توان تشخیص داد . تعداد دیگری از روی تغییر خصوصیات الکتریکی و تعدادی را با صدای مخصوصی که در هنگام کار تولید می کنند .
بنابرای ن نظریه عیب یابی از راههای مختلف صورت می گیرد که ما در این در بخش عیب های مکانیکی از روش مشاهده و آزمایش با دست و در بخش عیب های الکتریکی از روش تغییر خصوصیات الکتریکی برای عیب یابی ماشین ها استفاده خواهیم کرد .
به طور کلی هر وسیله الکتریکی ممکن است دو نوع عیب عمده پیدا کند : الف – عیب در قطعات مکانیکی (عیب های مکانیکی) ب- عیب در مسیر جریان (عیب های الکتریکی) .
تشخیص عیب های مکانیکی و رفع آنها
عیب های مکانیکی ناشی از خرابی قطعات متحرک و غیر متحرک است . این قطعات را که به دلایل مختلفی ممکن است خراب شوند ، باید تعمیر یا تعویض کرد .
در اینجا به برخی از خرابی ها و دلایل عمده آنها اشاره می کنیم .
شکستگی بدنه و درپوش ها (قالپاق ها) :
شکستگی بده یا در پوش ها معمولاً در اثر ضربه های ناگهانی ناشی از برخورد جسمی به ماشین یا فشار بیش از حد وسیله ای بر روی بدنه یا قالپاق های آن و عواملی نظیر اینها به وجود می آید . معمولاً حجم قطعه شکسته شده کمی افزایش می یابد و شکستگی قطعه ای مانند قالپاق در بعضی مواقع باعث به هم خوردن تعادل ماشین می شود و تعدادی از قطعات متحرک و بعضی قطعات غیر متحرک آن ، جابه جا می شوند .
برای تشخیص این عیب باید همه قسمت های بدنه و درپوش ها را دقیقاً وارسی کرد در صورت مشاهده ترک یا شکستگی در بدنه ، باید آن را در صورت امکان جوش دهیم و در صورت مشاهده شکستگی در قالپاق ها باید آنها را عوض کنیم . بنابراین ، در هر موتور معیوب باید ابتدا بدنه و در پوش ها را کاملاً بازدید کرد و در صورت سالم بودن آنها به سراغ قطعه های دیگر رفت .
خرابی بلبرینگ ها ، بوش ها و یاتاقان ها :
این قطعات در موتور دو وظیفه مهم دارند : اول ، تکیه گاه هستند و فشار وارد شده را تحمل می کنند ؛ دوم اصطکاک میان قطعات ثابت و متحرک را کاهش می دهند .
به همین دلیل ، بازرسی منظم و روغن کاری و سرویس مرتب آنها نقش مهمی در کارکرد مناسب موتور دارد و امری ضروری است . تناوب روغن کاری و گریس کاری به عوامل مختلفی از جمله زمان کارکرد موثر ، شرایط آب و هوا و نظیر این ها بستگی دارد . معمولاً کارخانه های سازنده ، دستورالعمل مربوط به فواصل منظم روغن کاری ، نوع روغن گریس کاری و نوع گریس و شرایطی که موتور برای کار کردن در آن ساخته شده است را در کاتالوگ دستگاه ذکر می کنند . باید تا حد ممکن این دستورالعمل ها را به طور دقیق اجرا کرد .
در صورت خرابی وسایل یاد شده ، معمولاً موتور به سختی حرکت می کند یا هنگام کار ، لرزشی غیر عادی دارد و ممکن است صدایی غیر عادی ایجاد کند .
خرابی بلبرینگ ها ، بوش ها و یاتاقان ها به سه دلیل عمده زیر ممکن است اتفاق بیفتد :
الف – نرسیدن به موقع روغن یا گریس به این قطعات روغن کاری یا گریس کاری نامناسب .
ب – استفاده از موتور در محیطی کثیف تر از آنچه موتور برای آن ساخته شده است