لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
معرفی پیل سوختی / تاریخچه پیل سوختی /
اگر چه پیلسوختی به تازگی به عنوان یکی از راهکارهای تولید انرژی الکتریکی مطرح شده است ولی تاریخچه آن به قرن نوزدهم و کار دانشمند انگلیسی سرویلیام گرو بر میگردد. او اولین پیلسوختی را در سال 1839 با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت.
واژه "پیلسوختی" در سال 1889 توسط لودویک مند و چارلز لنجر به کار گرفته شد. آنها نوعی پیلسوختی که هوا و سوخت ذغالسنگ را مصرف میکرد، ساختند. تلاشهای متعددی در اوایل قرن بیستم در جهت توسعه پیلسوختی انجام شد که به دلیل عدم درک علمی مسئله هیچ یک موفقیت آمیز نبود. علاقه به استفاده از پیل سوختی با کشف سوختهای فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.
فصلی دیگر از تاریخچه تحقیقات پیلسوختی توسط فرانسیس بیکن از دانشگاه کمبریج انجام شد. او در سال 1932 بر روی ماشین ساخته شده توسط مند و لنجر اصلاحات بسیاری انجام داد. این اصلاحات شامل جایگزینی کاتالیست گرانقیمت پلاتین با نیکل و همچنین استفاده از هیدروکسیدپتاسیم قلیایی به جای اسید سولفوریک به دلیل مزیت عدم خورندگی آن میباشد. این اختراع که اولین پیلسوختی قلیایی بود، “Bacon Cell” نامیده شد. او 27 سال تحقیقات خود را ادامه داد تا توانست یک پیلسوختی کامل وکارا ارائه نماید. بیکون در سال 1959 پیلسوختی با توان 5 کیلووات را تولید نمود که میتوانست نیروی محرکه یک دستگاه جوشکاری را تامین نماید.
تحقیقات جدید در این عرصه از اوایل دهه 60 میلادی با اوج گیری فعالیتهای مربوط به تسخیر فضا توسط انسان آغاز شد. مرکز تحقیقات ناسا در پی تامین نیرو جهت پروازهای فضایی با سرنشین بود. ناسا پس از رد گزینههای موجود نظیر باتری (به علت سنگینی)، انرژی خورشیدی(به علت گران بودن) و انرژی هستهای (به علت ریسک بالا) پیلسوختی را انتخاب نمود.
تحقیقات در این زمینه به ساخت پیلسوختی پلیمری توسط شرکت جنرال الکتریک منجر شد. ایالات متحده فنآوری پیل سوختی را در برنامه فضایی Gemini استفاده نمود که اولین کاربرد تجاری پیلسوختی بود.
پرت و ویتنی دو سازنده موتور هواپیما پیلسوختی قلیایی بیکن را به منظور کاهش وزن و افزایش طول عمر اصلاح نموده و آن را در برنامه فضایی آپولو به کار بردند. در هر دو پروژه پیلسوختی بعنوان منبع انرژی الکتریکی برای فضاپیما استفاده شدند. اما در پروژه آپولو پیلهای سوختی برای فضانوردان آب آشامیدنی نیز تولید میکرد. پس از کاربرد پیلهای سوختی در این پروژهها، دولتها و شرکتها به این فنآوری جدید به عنوان منبع مناسبی برای تولید انرژی پاک در آینده توجه روزافزونی نشان دادند.
از سال 1970 فنآوری پیلسوختی برای سیستمهای زمینی توسعه یافت. تحریم نفتی از سال1973-1979 موجب تشدید تلاش دولتمردان امریکا و محققین در توسعه این فنآوری به جهت قطع وابستگی به واردات نفتی گشت.
در طول دهه 80 تلاش محققین بر تهیه مواد مورد نیاز، انتخاب سوخت مناسب و کاهش هزینه استوار بود. همچنین اولین محصول تجاری جهت تامین نیرو محرکه خودرو در سال1993 توسط شرکت بلارد ارائه شد.
انواع پیلسوختی و خصوصیات هر یک در جدول زیر مشخص است.
پیل سوختی قلیایی
پیل سوختی
متانولی
پیل سوختی
کربنات مذاب
پیل سوختی
اسید فسفریک
پیل سوختی
پلیمری
پیل سوختی
اکسیدجامد
الکترولیت
هیدروکسید پتاسیم
غشاء پلیمری
مایع کربنات مذاب ثابت
مایع اسید فسفریک ثابت
غشاء تعویض یونی
سرامیک
دمای عملیاتی
90-60
130-60
650
200
80
1000
بازده
60-40%
40%
60-45%
40-35%
60-40%
65-50%
توان تولیدی
تا 20 کیلووات
کمتر از 10 کیلووات
بیش از یک مگاوات
بیش از 50 کیلووات
تا 250 کیلووات
بیش از 200 کیلووات
کاربرد
زیر دریایی و فضایی
کاربردهای قابل حمل
نیروگاهی
نیروگاهی
وسائل نقلیه، نیرو گاهی کوچک
نیروگاهی
کارکرد و اهمیت پیل سوختی
شناخت کلی پیلسوختی
پیلسوختی نوعی سل الکتروشیمیایی است که انرژی شیمیایی حاصل از واکنش را مستقیماً به انرژی الکتریکی تبدیل میکند. سازه و بدنه اصلی پیلسوختی از الکترولیت، الکترود آند و الکترود کاتد تشکیل شده است. نمای کلی یک پیلسوختی به همراه گازهای واکنش دهنده و تولید شده و مسیر حرکت یونها در شکل ارائه شده است.
پیل سوختی یک دستگاه تبدیل انرژی است که به لحاظ نظری تا زمانی که ماده اکسید کننده و سوخت در الکترودهای آن تأمین شود قابلیت تولید انرژی الکتریکی را دارد. البته در عمل استهلاک، خوردگی و بد عمل کردن اجزای تشکیل دهنده، طول عمر پیلسوختی را کاهش میدهد.
در یک پیلسوختی، سوخت به طور پیوسته به الکترود آند و اکسیژن به الکترود کاتد تزریق میشود و واکنشهای الکتروشیمیایی در الکترودها انجام شده و با ایجاد پتانسیل الکتریکی جریان الکتریکی برقرار میگردد. اگرچه پیلسوختی اجزاء و ویژگیهای مشابه یک باطری را دارد اما از بسیاری جهات با آن متفاوت است. باطری یک وسیله ذخیره انرژی است و بیشترین انرژی قابل استحصال از آن به وسیله میزان ماده شیمیایی واکنش دهنده که در خود باطری ذخیره شده است (عموماً در الکترودها) تعیین میشود. چنانچه ماده واکنش دهنده در باطری کاملاً مصرف شود، تولید انرژی الکتریکی متوقف خواهد شد (باطری تخلیه میشود). در باطری های نسل دوم ماده واکنش دهنده با شارژ مجدد، دوباره احیا میشود که این عمل مستلزم تأمین انرژی از یک منبع خارجی است. در این حالت نیز انرژی الکتریکی ذخیره شده در باطری محدود و وابسته به میزان ماده واکنش دهنده در آن خواهد بود.
گاز اکسید کننده نظیر هوا یا اکسیژن خالص در الکترود کاتد که با صفحه الکترولیت در تماس است جریان پیدا میکند و با اکسیداسیون الکتروشیمیایی سوخت که معمولاً هیدروژن است و با احیاء اکسید کننده انرژی شیمیایی گازهای واکنشگر به انرژی الکتریکی تبدیل میشود.
از نظر تئوری، هر مادهای که به صورت شیمیایی قابل اکسید شدن باشد و بتوان آن را به صورت پیوسته (به صورت سیال) به پیلسوختی تزریق کرد، میتواند به عنوان سوخت در الکترود آند پیلسوختی مورد استفاده قرار گیرد. به طور مشابه ماده اکسید کننده سیالی است که بتواند با نرخ مناسبی احیا شود.
گاز هیدروژن به دلیل تمایل واکنش دهندگی بالا به همراه چگالی انرژی بالا به عنوان سوخت ایدهآل در پیلسوختی مورد استفاده قرار میگیرد. هیدروژن را میتوان از تبدیل هیدروکربنها از طریق واکنش کاتالیستی، تولید و به صورتهای گوناگون ذخیره سازیکرد. اکسیژن مورد نیاز در پیلسوختی به طور مستقیم از هوا تهیه میشود. بر روی سطح الکترودهای آند و کاتد پیلسوختی واکنش اکسیداسیون و احیاء در ناحیه سه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
معرفی پیل سوختی / تاریخچه پیل سوختی /
اگر چه پیلسوختی به تازگی به عنوان یکی از راهکارهای تولید انرژی الکتریکی مطرح شده است ولی تاریخچه آن به قرن نوزدهم و کار دانشمند انگلیسی سرویلیام گرو بر میگردد. او اولین پیلسوختی را در سال 1839 با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت.
واژه "پیلسوختی" در سال 1889 توسط لودویک مند و چارلز لنجر به کار گرفته شد. آنها نوعی پیلسوختی که هوا و سوخت ذغالسنگ را مصرف میکرد، ساختند. تلاشهای متعددی در اوایل قرن بیستم در جهت توسعه پیلسوختی انجام شد که به دلیل عدم درک علمی مسئله هیچ یک موفقیت آمیز نبود. علاقه به استفاده از پیل سوختی با کشف سوختهای فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.
فصلی دیگر از تاریخچه تحقیقات پیلسوختی توسط فرانسیس بیکن از دانشگاه کمبریج انجام شد. او در سال 1932 بر روی ماشین ساخته شده توسط مند و لنجر اصلاحات بسیاری انجام داد. این اصلاحات شامل جایگزینی کاتالیست گرانقیمت پلاتین با نیکل و همچنین استفاده از هیدروکسیدپتاسیم قلیایی به جای اسید سولفوریک به دلیل مزیت عدم خورندگی آن میباشد. این اختراع که اولین پیلسوختی قلیایی بود، “Bacon Cell” نامیده شد. او 27 سال تحقیقات خود را ادامه داد تا توانست یک پیلسوختی کامل وکارا ارائه نماید. بیکون در سال 1959 پیلسوختی با توان 5 کیلووات را تولید نمود که میتوانست نیروی محرکه یک دستگاه جوشکاری را تامین نماید.
تحقیقات جدید در این عرصه از اوایل دهه 60 میلادی با اوج گیری فعالیتهای مربوط به تسخیر فضا توسط انسان آغاز شد. مرکز تحقیقات ناسا در پی تامین نیرو جهت پروازهای فضایی با سرنشین بود. ناسا پس از رد گزینههای موجود نظیر باتری (به علت سنگینی)، انرژی خورشیدی(به علت گران بودن) و انرژی هستهای (به علت ریسک بالا) پیلسوختی را انتخاب نمود.
تحقیقات در این زمینه به ساخت پیلسوختی پلیمری توسط شرکت جنرال الکتریک منجر شد. ایالات متحده فنآوری پیل سوختی را در برنامه فضایی Gemini استفاده نمود که اولین کاربرد تجاری پیلسوختی بود.
پرت و ویتنی دو سازنده موتور هواپیما پیلسوختی قلیایی بیکن را به منظور کاهش وزن و افزایش طول عمر اصلاح نموده و آن را در برنامه فضایی آپولو به کار بردند. در هر دو پروژه پیلسوختی بعنوان منبع انرژی الکتریکی برای فضاپیما استفاده شدند. اما در پروژه آپولو پیلهای سوختی برای فضانوردان آب آشامیدنی نیز تولید میکرد. پس از کاربرد پیلهای سوختی در این پروژهها، دولتها و شرکتها به این فنآوری جدید به عنوان منبع مناسبی برای تولید انرژی پاک در آینده توجه روزافزونی نشان دادند.
از سال 1970 فنآوری پیلسوختی برای سیستمهای زمینی توسعه یافت. تحریم نفتی از سال1973-1979 موجب تشدید تلاش دولتمردان امریکا و محققین در توسعه این فنآوری به جهت قطع وابستگی به واردات نفتی گشت.
در طول دهه 80 تلاش محققین بر تهیه مواد مورد نیاز، انتخاب سوخت مناسب و کاهش هزینه استوار بود. همچنین اولین محصول تجاری جهت تامین نیرو محرکه خودرو در سال1993 توسط شرکت بلارد ارائه شد.
انواع پیلسوختی و خصوصیات هر یک در جدول زیر مشخص است.
پیل سوختی قلیایی
پیل سوختی
متانولی
پیل سوختی
کربنات مذاب
پیل سوختی
اسید فسفریک
پیل سوختی
پلیمری
پیل سوختی
اکسیدجامد
الکترولیت
هیدروکسید پتاسیم
غشاء پلیمری
مایع کربنات مذاب ثابت
مایع اسید فسفریک ثابت
غشاء تعویض یونی
سرامیک
دمای عملیاتی
90-60
130-60
650
200
80
1000
بازده
60-40%
40%
60-45%
40-35%
60-40%
65-50%
توان تولیدی
تا 20 کیلووات
کمتر از 10 کیلووات
بیش از یک مگاوات
بیش از 50 کیلووات
تا 250 کیلووات
بیش از 200 کیلووات
کاربرد
زیر دریایی و فضایی
کاربردهای قابل حمل
نیروگاهی
نیروگاهی
وسائل نقلیه، نیرو گاهی کوچک
نیروگاهی
کارکرد و اهمیت پیل سوختی
شناخت کلی پیلسوختی
پیلسوختی نوعی سل الکتروشیمیایی است که انرژی شیمیایی حاصل از واکنش را مستقیماً به انرژی الکتریکی تبدیل میکند. سازه و بدنه اصلی پیلسوختی از الکترولیت، الکترود آند و الکترود کاتد تشکیل شده است. نمای کلی یک پیلسوختی به همراه گازهای واکنش دهنده و تولید شده و مسیر حرکت یونها در شکل ارائه شده است.
پیل سوختی یک دستگاه تبدیل انرژی است که به لحاظ نظری تا زمانی که ماده اکسید کننده و سوخت در الکترودهای آن تأمین شود قابلیت تولید انرژی الکتریکی را دارد. البته در عمل استهلاک، خوردگی و بد عمل کردن اجزای تشکیل دهنده، طول عمر پیلسوختی را کاهش میدهد.
در یک پیلسوختی، سوخت به طور پیوسته به الکترود آند و اکسیژن به الکترود کاتد تزریق میشود و واکنشهای الکتروشیمیایی در الکترودها انجام شده و با ایجاد پتانسیل الکتریکی جریان الکتریکی برقرار میگردد. اگرچه پیلسوختی اجزاء و ویژگیهای مشابه یک باطری را دارد اما از بسیاری جهات با آن متفاوت است. باطری یک وسیله ذخیره انرژی است و بیشترین انرژی قابل استحصال از آن به وسیله میزان ماده شیمیایی واکنش دهنده که در خود باطری ذخیره شده است (عموماً در الکترودها) تعیین میشود. چنانچه ماده واکنش دهنده در باطری کاملاً مصرف شود، تولید انرژی الکتریکی متوقف خواهد شد (باطری تخلیه میشود). در باطری های نسل دوم ماده واکنش دهنده با شارژ مجدد، دوباره احیا میشود که این عمل مستلزم تأمین انرژی از یک منبع خارجی است. در این حالت نیز انرژی الکتریکی ذخیره شده در باطری محدود و وابسته به میزان ماده واکنش دهنده در آن خواهد بود.
گاز اکسید کننده نظیر هوا یا اکسیژن خالص در الکترود کاتد که با صفحه الکترولیت در تماس است جریان پیدا میکند و با اکسیداسیون الکتروشیمیایی سوخت که معمولاً هیدروژن است و با احیاء اکسید کننده انرژی شیمیایی گازهای واکنشگر به انرژی الکتریکی تبدیل میشود.
از نظر تئوری، هر مادهای که به صورت شیمیایی قابل اکسید شدن باشد و بتوان آن را به صورت پیوسته (به صورت سیال) به پیلسوختی تزریق کرد، میتواند به عنوان سوخت در الکترود آند پیلسوختی مورد استفاده قرار گیرد. به طور مشابه ماده اکسید کننده سیالی است که بتواند با نرخ مناسبی احیا شود.
گاز هیدروژن به دلیل تمایل واکنش دهندگی بالا به همراه چگالی انرژی بالا به عنوان سوخت ایدهآل در پیلسوختی مورد استفاده قرار میگیرد. هیدروژن را میتوان از تبدیل هیدروکربنها از طریق واکنش کاتالیستی، تولید و به صورتهای گوناگون ذخیره سازیکرد. اکسیژن مورد نیاز در پیلسوختی به طور مستقیم از هوا تهیه میشود. بر روی سطح الکترودهای آند و کاتد پیلسوختی واکنش اکسیداسیون و احیاء در ناحیه سه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 26
معرفی پیل سوختی / تاریخچه پیل سوختی /
اگر چه پیلسوختی به تازگی به عنوان یکی از راهکارهای تولید انرژی الکتریکی مطرح شده است ولی تاریخچه آن به قرن نوزدهم و کار دانشمند انگلیسی سرویلیام گرو بر میگردد. او اولین پیلسوختی را در سال 1839 با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت.
واژه "پیلسوختی" در سال 1889 توسط لودویک مند و چارلز لنجر به کار گرفته شد. آنها نوعی پیلسوختی که هوا و سوخت ذغالسنگ را مصرف میکرد، ساختند. تلاشهای متعددی در اوایل قرن بیستم در جهت توسعه پیلسوختی انجام شد که به دلیل عدم درک علمی مسئله هیچ یک موفقیت آمیز نبود. علاقه به استفاده از پیل سوختی با کشف سوختهای فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.
فصلی دیگر از تاریخچه تحقیقات پیلسوختی توسط فرانسیس بیکن از دانشگاه کمبریج انجام شد. او در سال 1932 بر روی ماشین ساخته شده توسط مند و لنجر اصلاحات بسیاری انجام داد. این اصلاحات شامل جایگزینی کاتالیست گرانقیمت پلاتین با نیکل و همچنین استفاده از هیدروکسیدپتاسیم قلیایی به جای اسید سولفوریک به دلیل مزیت عدم خورندگی آن میباشد. این اختراع که اولین پیلسوختی قلیایی بود، “Bacon Cell” نامیده شد. او 27 سال تحقیقات خود را ادامه داد تا توانست یک پیلسوختی کامل وکارا ارائه نماید. بیکون در سال 1959 پیلسوختی با توان 5 کیلووات را تولید نمود که میتوانست نیروی محرکه یک دستگاه جوشکاری را تامین نماید.
تحقیقات جدید در این عرصه از اوایل دهه 60 میلادی با اوج گیری فعالیتهای مربوط به تسخیر فضا توسط انسان آغاز شد. مرکز تحقیقات ناسا در پی تامین نیرو جهت پروازهای فضایی با سرنشین بود. ناسا پس از رد گزینههای موجود نظیر باتری (به علت سنگینی)، انرژی خورشیدی(به علت گران بودن) و انرژی هستهای (به علت ریسک بالا) پیلسوختی را انتخاب نمود.
تحقیقات در این زمینه به ساخت پیلسوختی پلیمری توسط شرکت جنرال الکتریک منجر شد. ایالات متحده فنآوری پیل سوختی را در برنامه فضایی Gemini استفاده نمود که اولین کاربرد تجاری پیلسوختی بود.
پرت و ویتنی دو سازنده موتور هواپیما پیلسوختی قلیایی بیکن را به منظور کاهش وزن و افزایش طول عمر اصلاح نموده و آن را در برنامه فضایی آپولو به کار بردند. در هر دو پروژه پیلسوختی بعنوان منبع انرژی الکتریکی برای فضاپیما استفاده شدند. اما در پروژه آپولو پیلهای سوختی برای فضانوردان آب آشامیدنی نیز تولید میکرد. پس از کاربرد پیلهای سوختی در این پروژهها، دولتها و شرکتها به این فنآوری جدید به عنوان منبع مناسبی برای تولید انرژی پاک در آینده توجه روزافزونی نشان دادند.
از سال 1970 فنآوری پیلسوختی برای سیستمهای زمینی توسعه یافت. تحریم نفتی از سال1973-1979 موجب تشدید تلاش دولتمردان امریکا و محققین در توسعه این فنآوری به جهت قطع وابستگی به واردات نفتی گشت.
در طول دهه 80 تلاش محققین بر تهیه مواد مورد نیاز، انتخاب سوخت مناسب و کاهش هزینه استوار بود. همچنین اولین محصول تجاری جهت تامین نیرو محرکه خودرو در سال1993 توسط شرکت بلارد ارائه شد.
انواع پیلسوختی و خصوصیات هر یک در جدول زیر مشخص است.
پیل سوختی قلیایی
پیل سوختی
متانولی
پیل سوختی
کربنات مذاب
پیل سوختی
اسید فسفریک
پیل سوختی
پلیمری
پیل سوختی
اکسیدجامد
الکترولیت
هیدروکسید پتاسیم
غشاء پلیمری
مایع کربنات مذاب ثابت
مایع اسید فسفریک ثابت
غشاء تعویض یونی
سرامیک
دمای عملیاتی
90-60
130-60
650
200
80
1000
بازده
60-40%
40%
60-45%
40-35%
60-40%
65-50%
توان تولیدی
تا 20 کیلووات
کمتر از 10 کیلووات
بیش از یک مگاوات
بیش از 50 کیلووات
تا 250 کیلووات
بیش از 200 کیلووات
کاربرد
زیر دریایی و فضایی
کاربردهای قابل حمل
نیروگاهی
نیروگاهی
وسائل نقلیه، نیرو گاهی کوچک
نیروگاهی
کارکرد و اهمیت پیل سوختی
شناخت کلی پیلسوختی
پیلسوختی نوعی سل الکتروشیمیایی است که انرژی شیمیایی حاصل از واکنش را مستقیماً به انرژی الکتریکی تبدیل میکند. سازه و بدنه اصلی پیلسوختی از الکترولیت، الکترود آند و الکترود کاتد تشکیل شده است. نمای کلی یک پیلسوختی به همراه گازهای واکنش دهنده و تولید شده و مسیر حرکت یونها در شکل ارائه شده است.
پیل سوختی یک دستگاه تبدیل انرژی است که به لحاظ نظری تا زمانی که ماده اکسید کننده و سوخت در الکترودهای آن تأمین شود قابلیت تولید انرژی الکتریکی را دارد. البته در عمل استهلاک، خوردگی و بد عمل کردن اجزای تشکیل دهنده، طول عمر پیلسوختی را کاهش میدهد.
در یک پیلسوختی، سوخت به طور پیوسته به الکترود آند و اکسیژن به الکترود کاتد تزریق میشود و واکنشهای الکتروشیمیایی در الکترودها انجام شده و با ایجاد پتانسیل الکتریکی جریان الکتریکی برقرار میگردد. اگرچه پیلسوختی اجزاء و ویژگیهای مشابه یک باطری را دارد اما از بسیاری جهات با آن متفاوت است. باطری یک وسیله ذخیره انرژی است و بیشترین انرژی قابل استحصال از آن به وسیله میزان ماده شیمیایی واکنش دهنده که در خود باطری ذخیره شده است (عموماً در الکترودها) تعیین میشود. چنانچه ماده واکنش دهنده در باطری کاملاً مصرف شود، تولید انرژی الکتریکی متوقف خواهد شد (باطری تخلیه میشود). در باطری های نسل دوم ماده واکنش دهنده با شارژ مجدد، دوباره احیا میشود که این عمل مستلزم تأمین انرژی از یک منبع خارجی است. در این حالت نیز انرژی الکتریکی ذخیره شده در باطری محدود و وابسته به میزان ماده واکنش دهنده در آن خواهد بود.
گاز اکسید کننده نظیر هوا یا اکسیژن خالص در الکترود کاتد که با صفحه الکترولیت در تماس است جریان پیدا میکند و با اکسیداسیون الکتروشیمیایی سوخت که معمولاً هیدروژن است و با احیاء اکسید کننده انرژی شیمیایی گازهای واکنشگر به انرژی الکتریکی تبدیل میشود.
از نظر تئوری، هر مادهای که به صورت شیمیایی قابل اکسید شدن باشد و بتوان آن را به صورت پیوسته (به صورت سیال) به پیلسوختی تزریق کرد، میتواند به عنوان سوخت در الکترود آند پیلسوختی مورد استفاده قرار گیرد. به طور مشابه ماده اکسید کننده سیالی است که بتواند با نرخ مناسبی احیا شود.
گاز هیدروژن به دلیل تمایل واکنش دهندگی بالا به همراه چگالی انرژی بالا به عنوان سوخت ایدهآل در پیلسوختی مورد استفاده قرار میگیرد. هیدروژن را میتوان از تبدیل هیدروکربنها از طریق واکنش کاتالیستی، تولید و به صورتهای گوناگون ذخیره سازیکرد. اکسیژن مورد نیاز در پیلسوختی به طور مستقیم از هوا تهیه میشود. بر روی سطح الکترودهای آند و کاتد پیلسوختی واکنش اکسیداسیون و احیاء در ناحیه سه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 45
فهرست عناوین
تاریخچه پیل سوختی
پیل سوختی چیست؟
مشخصات عمومی پیل های سوختی یا فیولسل ها
نقش الکترولیت در پیل سوختی
انواع پیلهای سوختی کدامند؟
مزایای پیل سوختی چیست؟
چه سوختهایی میتوانند در پیلهای سوختی بکار روند؟
کاربردهای پیل سوختی چیست؟
قیمت پیلهای سوختی چقدر است؟
آیا میتوان از پیلهای سوختی برای انرژی مصرفی منازل استفاده نمود؟
روشهای تولید پیل سوختی
سوخت تازه برای پیل های سوختی
ساخت پیل سوختی با نیروی باکتری
کاربردهای پیل سوختی نیروگاهی
یکی دیگر از انگیزه های وسوه برانگیز بکارگیری پیل سوختی
"هیدروژن 3 اوپل" دونده دو ماراتن، قهرمان مسابقات رالی
سکوئل جنرال موتورز
فناوری های مصرف هیدروژن - پیل سوختی Hydrogen & fuel cell
بهبود کارایی پیلهای سوختی با الکترولیتهای پلیمری
تأمین انرژی پیل های سوختی مبتنی
هیدروژن, سوخت مصرفی پیل ها
روشهای تهیه هیدروژن
پیل سوختی اسید فسفوریک (PAFN)
کاربرد های پیل های سوختی اسید فسفریک
کاربردهای پیل های سوختی درکشورهای مختلف
نخستین خودروهای پیل سوختیدر ایران
نانو بیوتکنولوژی
نحوه تولید برق در پیل سوختی
کاربردهای پیل سوختی فضایی
پیل سوختی به جای باتری
تاریخچه پیل سوختی
اگر چه پیلسوختی به تازگی به عنوان یکی از راهکارهای تولید انرژی الکتریکی مطرح شده است ولی تاریخچه آن به قرن نوزدهم و کار دانشمند انگلیسی سرویلیام گرو بر میگردد. او اولین پیلسوختی را در سال 1839 با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت.
William grove
واژه "پیلسوختی" در سال 1889 توسط لودویک مند و چارلز لنجر به کار گرفته شد. آنها نوعی پیلسوختی که هوا و سوخت ذغالسنگ را مصرف میکرد، ساختند. تلاشهای متعددی در اوایل قرن بیستم در جهت توسعه پیلسوختی انجام شد که به دلیل عدم درک علمی مسئله هیچ یک موفقیت آمیز نبود. علاقه به استفاده از پیل سوختی با کشف سوختهای فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.
فصلی دیگر از تاریخچه تحقیقات پیلسوختی توسط فرانسیس بیکن از دانشگاه کمبریج انجام شد. او در سال 1932 بر روی ماشین ساخته شده توسط مند و لنجر اصلاحات بسیاری انجام داد. این اصلاحات شامل جایگزینی کاتالیست گرانقیمت پلاتین با نیکل و همچنین استفاده از هیدروکسیدپتاسیم قلیایی به جای اسید سولفوریک به دلیل مزیت عدم خورندگی آن میباشد. این اختراع که اولین پیلسوختی قلیایی بود، “Bacon Cell” نامیده شد. او 27 سال تحقیقات خود را ادامه داد تا توانست یک پیلسوختی کامل وکارا ارائه نماید. بیکون در سال 1959 پیلسوختی با توان 5 کیلووات را تولید نمود که میتوانست نیروی محرکه یک دستگاه جوشکاری را تامین نماید.
تحقیقات جدید در این عرصه از اوایل دهه 60 میلادی با اوج گیری فعالیتهای مربوط به تسخیر فضا توسط انسان آغاز شد. مرکز تحقیقات ناسا در پی تامین نیرو جهت پروازهای فضایی با سرنشین بود. ناسا پس از رد گزینههای موجود نظیر باتری (به علت سنگینی)، انرژی خورشیدی(به علت گران بودن) و انرژی هستهای (به علت ریسک بالا) پیلسوختی را انتخاب نمود.
تحقیقات در این زمینه به ساخت پیلسوختی پلیمری توسط شرکت جنرال الکتریک منجر شد. ایالات متحده فنآوری پیل سوختی را در برنامه فضایی Gemini استفاده نمود که اولین کاربرد تجاری پیلسوختی بود.
پیل سوختی چیست؟
پیل سوختی مانند یک باطری کار می کند اما بر خلاف باطری مادامی که به آن سوخت رسانده شود، از کار نمی افتد و به شارژ مجدد احتیاج ندارد و انرژی را بصورت الکتریسیته و گرما تولید خواهد کرد.پیلهای سوختی ابزارهای الکتروشیمیایی هستند که انرژی شیمیایی یک واکنش را مستقیما به انرژی الکتریکی تبدیل میکنند . ساختار فیزیکی و بنیادی یا مصالح ساختمانی پیل سوختی از یک لایه الکترولیت تشکیل شده که با یک کاتد و آند منفذ دار در هر طرف در تماس است.
یک سیستم پیل سوختی شامل یک Fuel Reformer می تواند هیدروژن را از یک سوخت هیدروکربنی مانند گاز طبیعی،متانول و حتی بنزین تهیه کند. چون پیل سوختی بر اساس شیمی کار می کند نه احتراق، خروجیهای چنین سیستمی خیلی کمتر از تمیزترین فرایندهای احتراق سوختی می باشد.
در یک پیل سوختی معمولی سوختهای گازی به طور پیوسته به قطعه آند (الکترود منفی) و یک اکساینده (مثلا اکسیژن هوا) به قطعه کاتد (الکترود مثبت) مرتبا
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 37
بررسی جذابیت پیل سوختی در مقایسه با سایر فناوریهای قابل استفاده در صنعت خودرو کشور محمدرضا آراستی (استادیار) دانشکدهی مدیریت و اقتصاد، دانشگاه صنعتی شریفهمایون معدل (استادیار) دانشکده مهندسی شیمی، دانشگاه تربیت مدرس استفادهی بهینه از منابع تجدیدناپذیر و حفظ محیط زیست از جمله چالشهای مهمی است که امروزه بشر با آن مواجه است. فناوری پیل سوختی با ویژگیهای منحصر بهفرد در کاهش آلودگی، و نیز کاربرد وسیع آن در صنایع مختلف، از جمله صنعت خودرو، رفته رفته بهعنوان یکی از راهحلهای اساسی در ارتباط با چالش فوق مطرح میشود. نوشتار حاضر اهمیت فناوری پیل سوختی را در صنعت خودرو کشور، در مقایسه با فناوریهای رقیب، در یک دورنمای 10 ساله مورد بررسی قرار میدهد. در این ارزیابی فناوریها بر اساس معیارهای مختلف، از جمله معیار فنی، اقتصادی، فناوری، زیست محیطی و فرهنگی ـ سیاسی مقایسه شدهاند. برای این منظور از روش ((تحلیل سلسله مراتبی (AHP) (( که یکی از روشهای تجزیه و تحلیل چندمعیاره به شمار میرود، استفاده شده است. نتایج ارزیابیها نشان میدهد که از دیدگاه دولت، تولید کنندگان و مصرفکنندگان خودرو، پیل سوختی در مقایسه با فناوریهای رقیب دارای ارجحیت بالاتری است . مقدمه فناوری (تکنولوژی) را میتوان کاربرد دستاوردهای علمی و تجربی بهمنظور پاسخ به نیازهای اجتماعی تعریف کرد.[1] نظر به اینکه نیازهای اجتماعی پیوسته در حال تغییرند، شاهد تغییر مداوم فناوریها هستیم. تحولات تکنولوژیک به هدف پاسخ به نیازهای جدید و یا برآورده کردن نیازهای موجود با اثر بخشی و کارآیی بالاتر صورت میگیرند. استفادهی بهینه از منابع تجدیدناپذیر و حفظ محیط زیست از جمله چالشهای مهمی است که امروزه بشر با آن مواجه است. وسائط نقلیه بیشترین سهم را در مصرف سوخت و آلودگی هوا به خود اختصاص میدهند. اگر چه خودروهای جدید، نسبت به خودروهای اولیه، به مراتب مواد آلایندهی کمتری تولید میکنند، گسترش روزافزون تعداد خودرو در حال تردد و افزایش مسافتی که هر خودرو در طول عمر خود طی میکند، منجر به افزایش آلودگی هوا شده است.[2] مرکز منابع هوای کالیفرنیا میزان هیدروکربن تولید شده در هر کیلومتر، ونیز مسافت پیموده شده توسط هر اتومبیل را بین سالهای 1960 تا 2015 مورد بررسی قرار داده است (شکل 1). بر این اساس، آلایندگی اتومبیلهای امروزی در غرب، نسبت به اتومبیلهای 40 سال قبل، بیش از 85% کاهش یافته است. اما در صورت تداوم استفاده از فناوریهای موجود، پیشبینی میشود که آلودگی هوا با توجه به رشد قابل توجه تعداد خودروها و مسیر جابهجایی آنها در مجمیابد (شکل 2). در سالهای اخیر تلاشهای بسیاری برای حل مشکل فوق صورت گرفته است. بعضی از تلاشها با هدف بهبود فناوریهای موجود انجام گرفتهاند، که از آن جمله میتوان به توسعهی فناوری در موتورهای درون سوز (احتراق داخلی) و موتورهای درون سوز با شکل .1 هیدروکربن تولید شده در کیلومتر و نیز مسافت پیموده شده توسط اتومبیلها (سالهای 1960 تا 2015). سوخت جدید اشاره کرد. در مقابل، بخش دیگر تلاشها بهمنظور ایجاد تحول اساسی در فناوریهای موجود و خلق فناوریهای جدید صورت پذیرفتهاند، که مهمترین آنها عبارتاند از سیستمهای پیل سوختی، سیستمهای الکتریکی (باتریی) و سیستمهای هیبرید. شرکتهای خودروسازی در جهان برای کسب موقعیت برتر رقابتی، راهکارهای متفاوتی برای دستیابی به فناوریهای پنجگانهی فوق اتخاذ کردهاند. تصمیمگیری در این زمینه یکی از ضرورتهای امروز صنعت خودرو کشور ما نیز بهشمار میرود. صرف نظر از اینکه صنعت خودرو برای کشور در مقایسه با دیگر صنایع، میتواند از مزیت نسبی برخوردار باشد یا خیر، چنانچه بخواهیم به سرمایهگذاری در این صنعت ادامه داده و در سطح جهان فعالیت کنیم، باید محصولات خود را با استانداردهای جهانی و شرایط رقابت بینالمللی سازگار نماییم. لازمهی این کار بهرهگیری از فناوریهای برتر در فرایند تولید و نیز در محصولات، بهویژه در موتور خودرو است. بدیهی است بهعلت محدودیت منابع، سرمایهگذاری همزمان بر روی تمام فناوریها امکانپذیر نیست. لذا صنعت خودرو کشور میباید توان خودرا بر روی فناوریهای خاصی متمرکز سازد و از این طریق یک مزیت رقابتی برای خود ایجاد کند. انتخاب یک یا چند فناوری برای سرمایه گذاری، بستگی به جذابیت نسبی فناوریها و توان کشور در اکتساب و بهکارگیری آن فناوریها دارد. در این نوشتار ما توجه خود را تنها به مولفهی جذابیت معطوف میکنیم. در این رابطه اشاره به دو نکته ضروری است: .1 جذابیت فناوری یک معیار نسبی است. بدین معنی که در مقایسهی فناوری با فناوریهای رقیب میتوان میزان جذابیت آن را تعیین کرد. .2 جذابیت یک فناوری از نقطه نظرهای مختلف فنی، اقتصادی، اجتماعی، فرهنگی، سیاسی و... قابل بررسی است. بدین معنی که فناوری مورد نظر ممکن است از بعد فنی نسبت به فناوریهای دیگر برتری داشته باشد، ولی از بعد اقتصادی یا اجتماعی، نسبت به فناوریهای رقیب مزیت کمتری داشته باشد. بدیهی است جذابیت کلی فناوری تابع موقعیت آن در هر یک از ابعاد و نیز وزنی است که به هر بعد اختصاص مییابد. متاسفانه تاکنون در کشور ما توجه کمی به نکات فوق، بهویژه نکتهی دوم شده است. ارزیابی فناوریها معمولا از دیدگاه اقتصادی یا فنی انجام میشود. در مواردی نیز که تصمیمگیران پارامترهای متعددیوع افزایش را مد نظر قرار میدهند، معمولا تصمیمگیری براساس قضاوت کلی و بدون استفاده از ابزارهای تحلیلی صورت میگیرد. این در حالی است که روشهای متعددی برای تصمیمگیری در شرایط فوق وجود دارد. یکی از روشهای علمی تصمیمگیری در شرایطی که با پارامترهای متعدد روبرو هستیم، روش تحلیل سلسله مراتبی (AHP) است، که در ادامه به شرح آن میپردازیم. روش تحلیل سلسله مراتبی (AHP) در این روش چنانکه از نام آن استنباط میشود، مسئلهیتصمیمگیری در قالب یک ساختار سلسلهمراتبی (یک درخت) مدلسازی میشود. شکل 3 ریشهی درخت هدف نهایی تصمیمگیری است. بهعنوان مثال در اینجا انتخاب فناوری مناسب برای آیندهی صنعت خودرو کشور در راس درخت تصمیم قرار میگیرد. درخت تصمیم ممکن است لایههای متعدد داشته باشد. در مثال فوق، میتوان جنبههای اقتصادی، فرهنگی و غیره را در لایهی اول قرار داد. به همین ترتیب، هر یک از پارامترهای مذکور را میتوان به پارامترهای جزئیتری تقسیم کرد. مثلا قیمت تمامشدهی محصولی که از فناوری مورد نظر بهره میگیرد، امکان صادرات محصول و میزان سرمایهگذاری مورد نیاز برای دستیابی به فناوری مورد نظر، بخشی از جنبههای اقتصادی است که میتوانند مورد توجه قرار گیرند. در روش تحلیل سلسله مراتبی ابتدا ارزش نسبی پارامترهای تصمیمگیری، و سپس ارزش نسبی هر یک از گزینهها در برابر هر یک از پارامترها تعیین میشوند. بدین ترتیب که ارزش نسبی پارامترهای لایهی اول درخت در مقایسه باهدف نهایی تعیین میشود و سپس ارزش نسبی پارامترهای لایه دوم نسبت به هر یک از پارامترهای لایهی اول که در ارتباط با آنها قرار میگیرند، و به همین ترتیب تا لایهی آخر که ارزش نسبی پارامترها در مقایسه با پارامترهای لایهی ماقبل آخر تعیین میشود. پس از این مرحله، ارزش (نمره) نهایی هر یک از گزینهها از جمع وزنی ارزش آن گزینه در ارتباط با پارامترهای مورد مطالعه بهدست میآید. این ارزش را با رابطهی زیر نمایش میدهند: که در آن: =SAiارزش کلی گزینهی ; i =wjارزش نسبی پارامتر j دررابطه با هدف غایی ; =cijارزش گزینهی i از نظر پارامتر. j در روش تحلیل سلسله مراتبی، برای تعیین ارزش نسبی پارامترها یا گزینهها از مقایسات زوجی استفاده میکنند. هر پارامتر یا گزینه با پارامترها یا گزینههای هملایهی خود مقایسه شده و امتیاز دریافت میکند. چنانچه مقایسهی پارامترها یا گزینهها بهصورت کمی امکانپذیر باشد، نسبت (کسر) مقادیر نشاندهندهی ارجحیت یا امتیاز یک پارامتر یا گزینه، به پارامتر یا گزینهی دیگر است. اما اگر مقایسه بهصورت کمی امکانپذیر نباشد، ارجحیت محاسبه میشود. بدینترتیب تصمیمگیرنده نظر کیفی خود جدول .1 جدول تبدیل ارجحیت تصمیم گیرنده به امتیازات عددی. را با استفاده از این جدول به اعداد کمی تبدیل کرده و در ماتریس مربعی به نام ماتریس امتیازات وارد میکند: اگر امتیاز پارامتر (گزینه a (نسبت به پارامتر (گزینه b (را با aij نمایش دهیم، خواهیم داشت: بنابراین کافی است که تصمیمگیرنده یکی از مثلثهای بالایی یا پایینی ماتریس امتیازات را تکمیل کند. بهدنبال تکمیل ماتریس امتیازات، ارزش نسبی پارامترها از طریق محاسبهی بردار ویژهی این ماتریس تعیین میشود: که در آن: =W(wj)بردار ویژهی ماتریس امتیازات و یا اهمیت نسبی پارامترها (گزینهها); =A(aij)ماتریس امتیازات یا ماتریس مقایسات زوجی; =eبردار یکه; =eTبردار یکهی تبدیل یافته. پس از محاسبهی بردار ویژه، براساس روابط زیر میزان ناسازگاری تصمیم گیرنده محاسبه میشود: که در آن: =C.I.شاخص سازگاری ; غ= مقدار ویژهی ماتریس امتیازات; =wjاهمیت نسبی پارامتر (گزینه j (ام; =nابعاد ماتریس مربعی امتیازات. بهمنظور تعدیل شاخص سازگاری(C.I.) ، آن را بر مقداری ثابت تقسیم میکنند که براساس تجربه حاصل شده است. اینمقدار ثابت از تولید تصادفی ماتریسهای متعدد و محاسبهی میانگین C.I. آنها جدول .2 مقدار R.I. به ازای n های مختلف. بهدست آمده است. بههمین دلیل از آن بهعنوان شاخص تصادفی یاد میکنند R.I. .تابعی است از ابعاد ماتریس امتیازات (n)، ولی برای ماتریسهای با اندازهی یکسان، ثابت است. جدول 2 مقادیر R.I. را برای n های مختلف نشان میدهد. بدین ترتیب، شاخص دیگری تحت عنوان نسبت سازگاری محاسبه میشود که تعدیل یافتهی C.I. است: و در آن: =C.R.نسبت سازگاری; =C.I.شاخص سازگاری; =R.I.شاخص تصادفی. در مورد مزایای روش تحلیل سلسله مراتبی میتوان بهطور خلاصه به موارد زیر اشاره کرد:[3و4] یا امتیاز براساس جدول 1
1 با تبدیل مسئلهی تصمیمگیری به یک درخت تصمیم، تصویر روشنی از مسئله به دست میآید، که بررسی مسائل پیچیده را بهراحتی امکانپذیر میسازد. .2 امکان در نظر گرفتن پارامترهای کمی و کیفی را بهطور همزمان فراهم میسازد. .3 به تصمیمگیری گروهی اهمیت داده و از آن بهرهبرداری شایانی میکند. .4 دراین روش میزان ناسازگاری تصمیمگیرنده در مقایسات زوجی بررسی میشود. درجهی ناسازگاری نشان میدهد که تا چه اندازه میتوان به مقایسات انجام شده اعتماد کرد. چنانچه این مقدار از حد مجاز بیشتر باشد، تجدید نظر در ماتریس امتیازات ضروری است. مقایسهی پیل سوختی با فناوریهای رقیبهمانطور که اشاره شد، فعالیتهای بخش تحقیق و توسعه (R&D) خودروسازان جهان بر پایهی پنج فناوری متمرکز است: سیستمهای پیل سوختی، سیستمهای الکتریکی/باتری، سیستمهای هیبرید، موتورهای درون سوز (ICE) و موتورهای درون سوز احتراق داخلی با سوخت جدید .(ICE - NF) هدف، بررسی جذابیت فناوریهای فوق برای صنعت خودرو کشور در یک دورنمای 10ساله است. تعیین معیارهای تصمیمگیریبرای ارزیابی گزینههای پنجگانه در بررسی جذابیت فناوریهای ذکر شده، ابتدا پارامترهای اصلی موثر در تصمیمگیری بدین شرح انتخاب شدند: شاخصهای فنی، شاخصهای اقتصادی، شاخصهای مربوط به مشخصات فناوری (شاخصهای تکنولوژیک)، شاخصهای زیستمحیطی و شاخصهای فرهنگی ـ سیاسی. این شاخصها بهعنوان سرشاخههای درخت تصمیم در نظر گرفته شدند و سپس هر یک از شاخهها به زیرشاخههای جزئیتر تفکیک و در نهایت مجموعهی درخت تصمیم تکمیل شد (شکل4). در ادامه به شرح مختصر هر یک از شاخههای درخت تصمیم میپردازیم. شاخصهای فنیکارشناسان فنی و مصرفکنندگان عمدتا به خصوصیات فنی و مشخصات سرویسدهی خودرو توجه داشته و آنرا معیار انتخاب خود قرار میدهند. در یک بازار رقابتی، تولیدکنندگان ملزم به در نظر گرفتن این مشخصات و جلب رضایت مشتریان خواهند بود. لذا توجه به این معیارها در انتخاب فناوری مناسب ضروری است. شاخصهای فنی که در این مطالعه در نظر گرفته شدهاند عبارتاند از: تعمیرپذیری: سادگی تعمیر و نگهداری خودرویی که در آن از فناوری مورد نظر استفاده شده است، با جذابیت فناوری نسبت مستقیم دارد. ((تعمیرپذیری)) به سه زیر شاخهی ((ضریب اطمینان))، ((هزینهی تعمیرات)) و ((هزینهی نگهداری)) تفکیک میشود. زمان شارژ یا سوختگیری: زمان شارژ یا سوختگیری خودرویی که در آن از فناوری مورد نظر استفاده شده است، با جذابیت فناوری نسبت معکوس د برد با یکبار سوختگیری: مسافتی که خودرو استاندارد با یکبار سوختگیری طی میکند، یکی از شاخصهای جذابیت فناوری مورد استفاده در آن خودرو به حساب میآید. گشتاور و چگالی قدرت موتور: از جمله مشخصات فنی محصول ضریب اطمینان تعمیر و نگهداری هزینه تعمیرات هزینه نگهداری فنیزمان شارژ یا سوختگیری برد با یکبار سوختگیری گشتاور طول عمر چگالی قدرت پیچیدگیبازده سوخت قیمت شاخصهای ارزیابی سوخت منابع موجود جذابیت برای انتخابزیر ساخت توزیع فناوری مناسب اقتصادی زیر ساخت تولید خودروهای آیندهامکان صادرات قیمت محصول سرمایهگذاریحجم سرمایهگذاری اشتغالزاییریسکسرمایهگذاری چرخهی عمر وابستگی به مواداولیه وفناوریهای دیگر فناوریمیزان تسلط کاربرد در سایر صنایع انعطافپذیری در مصارف مختلف آلایندگی هوا زیستمحیطیآلایندگی صوتی آلایندگی بازیافت اشتغالزایی فرهنگی ـ سیاسی قدرت سیاسی و ارزش راهبردی مقاومت در برابر تغییر بهشمار میروند که معمولا مورد نظر مشتری است و با جذابیت فناوری مورد استفاده در خودرو نسبت مستقیم دارد. طول عمر: فناوریها بر طول عمر محصول اثر متفاوتی دارند. از دید مصرفکننده، هر اندازه طول عمر خودرو بیشتر باشد مطلوبتر است و میتوان نتیجه گرفت که فناوری بهکار رفته در آن خودرو جذابتر است. پیچیدگی سیستم: معمولا پیچیدگی سیستم علاوه بر کاهش درجهی تعمیرپذیری محصول، در مصرف کنندگان آن اثرات روانی منفی برجای میگذارد. شاخصهای اقتصادی یکی از پارامترهای موثر در انتخاب فناوریهای آینده، پیامدهای اقتصادی سرمایهگذاری روی این فناوریهاست. بخشی از جنبههای اقتصادی که دراین مطالعه مورد توجه قرار گرفتهاند، عبارتاند از: قیمت محصول: قیمت تمام شدهی محصولی که در آن از فناوری مورد نظر استفاده شده است، در موفقیت آن محصول در بازار و در جذابیت فناوری موثر است. امکان صادرات: امکان صادرات محصولی که در آن از فناوری مورد نظر بهره گرفته شده است، در جذابیت فناوری موثر است. سرمایهگذاری مورد نیاز: میزان سرمایهگذاری مورد نیاز برای دستیابی به فرایند مورد نظر با جذابیت آن نسبت معکوس دارد. شاخص سرمایهگذاری به دو زیر شاخهی حجم سرمایهگذاری مورد نیاز و ریسک حاصل از سرمایهگذاری تفکیک میشود. پارامترهای مربوط به سوخت: بخشی از شاخصهای اقتصادی مربوط به مصرف سوخت در خودرویی است که از فناوری مورد نظر استفاده میکند. پارامترهای مربوط به سوخت نیز به پنج زیر شاخه قابل تفکیک است: بازده سوخت در خودرو،ارد.
سرمایهگذاری مورد نیاز برای ایجاد زیرساخت تولید سوخت، سرمایهگذاری مورد نیاز برای ایجاد زیرساخت توزیع سوخت، منابع سوختی موجود در کشور و قیمت سوخت مورد نیاز. اشتغال زایی: تعداد شغل مستقیم و غیرمستقیم که ممکن است در جریان توسعهی فناوری مورد نظر ایجاد شوند، یکی دیگر از پارامترهای اقتصادی است که در جذابیت فناوری موثر است. شاخصهای فناوریهر فناوری دارای مشخصات و ویژگیهای خاصی است که آنرا از سایر فناوریها متمایز میکند. مقایسهی فناوریها از این بعد میتواند تصمیمگیران را در انتخاب فناوری مناسب یاری کند. شاخصهای فناوری مورد توجه در این مطالعه عبارتاند از: چرخهی عمر فناوری: فناوری در طول عمر خود چهار مرحله را سپری میکند:[5] پیدایش (جنینی)، رشد، بلوغ، و زوال (جایگزینی). مرحلهیی از چرخهی عمر که فناوری در آن قرار دارد، میتواند در جذابیت فناوری موثر باشد. بهعنوان مثال، فناوری که در مرحلهی رشد قرار دارد نسبت به فناوری که در مرحلهی بلوغ یا زوال بسر میبرد بهمراتب از جذابیت بیشتری برخوردار است. وابستگی فناوری به مواد اولیه و فناوریهای دیگر: هر قدر وابستگی یک فناوری به مواد اولیه و فناوریهای دیگری که در اختیار ما نیستند بیشتر باشد، جذابیت آن کمتر است. میزان تسلط متخصصان داخلی بر فناوری: یکی از شرایط لازم برای دستیابی به فناوری مورد نظر وجود حداقل آگاهی و دانش نسبت به آن در کشور است. لذا تسلط متخصصان داخلی بر فناوری، جذابیت آنرا افزایش میدهد. کاربرد فناوری در سایر صنایع و انعطافپذیری آن در مصارف مختلف: چنانچه امکان بهکارگیری فناوری در محصولات مختلف و یا صنایع مختلف وجود داشته باشد، جذابیت آن بیشتر است . شاخصهای زیست محیطی ازجمله شاخصهای مهم تصمیمگیری در مورد فناوریهای آیندهی خودرو، تاثیر آنها بر محیط زیست است که امروزه یکی از مهمترین نگرانیهای جامعهی بشری است. اینکه هر یک از گزینهها تا چه حد بر محیط زندگی بشر تاثیر نامطلوب دارد میتواند در جذابیت آن برای سرمایهگذاری آینده موثر باشد. این تاثیر میتواند شامل مواردی چون آلایندگی هوا، آلایندگی صوتی و ارتعاش و همچنین آلایندگی محیط زیست به سبب انباشت مواد غیرقابل بازیافت (آلایندگی بازیافت) باشد. شاخصهای فرهنگی ـ سیاسی علاوه بر ابعاد فنی، اقتصادی، تکنولوژیک و زیست محیطی، ارزیابی گزینهها از منظر مسائل فرهنگی و سیاسی نیز ضروری است. فناوریها براساس ویژگیهای خاص خود اثر متفاوتی بر فرهنگ و نیز قدرت سیاسی کشورها دارند، که این موضوع جذابیت آنها را دستخوش تغییر میسازد. شاخصهای مربوط به مسائل فرهنگی و سیاسی که در این پروژه مورد توجه قرار گرفتهاند، عبارتاند از: مقاومت جامعه در برابر تغییرات ناشی از بهکارگیری فناوری جدید، ارزش راهبردی فناوری برای کشور (امکان کسب قدرت سیاسی ناشی از دستیابی به فناوری جدید) و تاثیر فناوری در اشتغالزایی. همانطور که ملاحظه میشود، عامل ((اشتغالزایی)) در میان شاخصهای فرهنگی ـ سیاسی و شاخصهای اقتصادی مشترک است. تعیین وزن (ارزش) شاخصهای درخت تصمیم پس از شناسایی معیارهای ارزیابی (شاخصهای جذابیت) و تعیین موقعیت آنها در درخت تصمیم، نوبت به محاسبهی وزن (ارزش) نسبی هر یک از معیارها میرسد. برای اینکار از روش تحلیل سلسله مراتبی استفاده شد. بدین ترتیب که از کارشناسان و متخصصین ذیربط خواسته شد تا با مقایسهی زوجی شاخصها نظر خود را مطابق با جدول 1 در ماتریس امتیازات وارد کنند. سپس از طریق محاسبهی بردار ویژهی ماتریس امتیازات، وزن یا ارزش نسبی شاخصها بهدست آمد. بهعنوان مثال، نتیجهی مقایسات زوجی شاخصهای زیستمحیطی بهشرح جدول 3 است. این جدول نشان میدهد که براساس نظر کارشناسان و متخصصینی که مورد پرسش قرار گرفتهاند، آلایندگی هوا بهمراتب از آلایندگی صوتی و بازیافت مهمتر است و درنتیجه فناوریهایی که کمتر آلودگی هوا ایجاد کنند، نسبت به فناوریهایی که آلودگی صوتی یا بازیافت کمتری ایجاد میکنند، از مزیت (جذابیت) بیشتری برخوردار خواهند بود. همانطور که ملاحظه میشود، مقدار مطلق اعداد معنیدار نیست، بلکه نسبت آنهاست که میتواند ارزش نسبی هر معیار را مشخص کند. محاسبات فوق برای چهار شاخهی دیگر درخت (یعنی فنی، اقتصادی، تکنولوژیک و فرهنگی ـ سیاسی) انجام شد، که از ذکر جزئیات آن صرف نظر میشود. سپس سرشاخههای درخت با یکدیگر مقایسه شدند وزن نسبی آنها با استفاده از روش تحلیل سلسله مراتبی تعیین شد. نتیجهی این محاسبات در جدول 4 نمایش داده شده است. بر اساس نظر کارشناسان، برای انتخاب فناوری مناسب، شاخصهای اقتصادی بیشترین ارزش را به خود اختصاص میدهند و شاخصهای تکنولوژیک در درجهی بعدی اهمیت قرار دارند. در این ارزیابی، شاخصهای فنی وزن صفر به خود گرفته و از درخت تصمیم حذف شدهاند. آیا این امر نشانگر بیاهمیت بودن معیارهای فنی در انتخاب فناوری مناسب است؟ در پاسخ باید گفت که محاسبات فوق از دیدگاه دولت صورت گرفته است. کارشناسانی که در این مطالعه شرکت کردهاند معتقدند که چنانچه بخواهیم از منظر دولت به فناوری مناسب خودروهای آینده نگاه کنیم، معیارهای فنی دارای ارزش چندانی نخواهند بود. ارزیابیهای جداگانهی مشابهی از دیدگاه تولیدکنندگان و