واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تحقیق درمورد فیزیک هسته ای

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

عنوان:

فیزیک هسته ای

چکیده :

برای بررسی تاریخچه فیزیک هسته‌ای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان می‌کردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» می‌باشد اقتباس کردند. این حدس و گمان دانشمندان یونانی حدود هزار سال دوام آورد، چند دهه طول کشید که نظریه غیر قابل تجزیه بودن اتم رد شد. اولین و اساسی‌ترین نتیجه تحقیقات ثابت کرد که اتم شامل دو جزء اصلی می‌باشد:هسته سنگین که تقریبا تمام جرم اتم را در خود دارد.

پوسته‌ای سبک که از ذرات الکتریسیته (الکترون) ساخته شده است. این الکترونها با سرعت فوق العاده زیادی به دور هسته در حرکت بوده و هرگز به روی آن سقوط نمی‌کنند.

ساختار هسته

تا آنجا که به ساختار هسته‌ای مربوط است می‌توان هسته اتم را به عنوان یک جرم نقطه‌ای و یک بار نقطه‌ای در نظر گرفت.

هسته ، شامل تمامی بار مثبت و تقریبا تمامی جرم اتم است، در نتیجه مرکزی را تشکیل می‌دهد که الکترونها حول آن می‌چرخند.

فیزیک هسته ای چیست؟

درون هر اتم می‌توان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.پروتونها در کنار هم قرار می‌گیرند و هسته اتم را تشکیل می‌دهند، در حالی که الکترونها به دور هسته می‌چرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب می‌کنند، پروتون و الکترون هم یکدیگر را جذب می‌کنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته می‌گردد. در اغلب حالت‌ها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع می‌کنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت می‌گیرد )

تعداد پروتونهای هسته نوع اتم را مشخص می‌کند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت می‌شوند، AL27 یا آلومینیوم 27 نامیده می‌شوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان می‌دهد.اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده می‌شود.بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل می‌دهد. شکل های مختلف اتم، ایزوتوپ نامیده می‌شوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.اتمهای ناپایدارتا اوایل قرن بیستم، تصور می‌شد تمامی اتم‌ها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع می‌کند.

هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما می‌شناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل می‌دهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار می‌کند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم



خرید و دانلود تحقیق درمورد فیزیک هسته ای


تحقیق درمورد فیزیک و زندگی 4ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

فیزیک و زندگی

فیزیک از واژه یونانی physikos به معنی « طبیعی» و physis به معنی « طبیعت» گرفته شده است. پس فیزیک علم طبیعت است به عبارتی در عرصه علم پدیده های طبیعی را بررسی می کند.

علم فیزیک

علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه می کند.مفاهیم بنیادی پدیده های طبیعی تحت عنوان قوانین فیزیک مطرح می شوند.این قوانین به توسط علوم ریاضی فرمول بندی می شوند به طوریکه قوانین فیزیک و روابط ریاضی با هم در توافق بوده و مکمل هم هستند.و دو تایی قادرند کلیه پدیده های فیزیکی را توصیف نمایند.

تاریخچه علم فیزیک

- از روزگاران باستان مردم سعی می کردند رفتار ماده را بفهمند. و بدانند که:چرا مواد مختلف خواص متفاوت دارند؟ چرا برخی مواد سنگینترند؟ و... همچنین جهان ، تشکیل زمین و رفتار اجرام آسمانی مانند ماه و خورشید برای همه معما بود.

- قبل از ارسطو تحقیقاتی که مربوط به فیزیک می شد ، بیشتر در زمینه نجوم صورت می گرفت. علت آن در این بود که لااقل بعضی از مسائل نجوم معین و محدود بود و به آسانی امکان داشت که آنها را از مسائل فیزیک جدا کنند. در برابر سوالاتی که پیش می آمد گاه خرافاتی درست می کردند، گاه تئوریهایی پیشنهاد می شد که بیشتر آنها نادرست بود.

این تئوریها اغلب برگرفته ازعبارتهای فلسفی بودند و هرگز بوسیله تجربه و آزمایش تحقیق نمی شدند. و بعضی مواقع نیز جوابهایی داده می شد که لااقل بصورت اجمالی و با تقریب کافی بنظر می رسید.

- جهان به دو قسمت تقسیم می شد: جهان تحت فلک قمر و مابقی جهان.مسائل فیزیکی اغلب مربوط به جهان زیر ماه بود و مسائل نجومی مربوط به ماه و آن طرف ماه نیز« فیزیک ارسطو» یا بطور صحیحتر« فیزیک مشائی» بود که در چند کتاب مانند« فیزیک»،« آسمان»،« آثار جوی»،« مکانیک»،« کون و فساد» و حتی« مابعدالطبیعه» دیده می شد.

- تا اینکه در قرن 17 ، گالیله برای اولین باربه منظور قانونی کردن تئوریهای فیزیک ، از آزمایش استفاده کرد. او تئوریها را فرمولبندی کرد و چندین نتیجه از دینامیک و اینرسی را با موفقیت آزمایش کرد. پس از گالیله ، اسحاق نیوتن ، قوانین معروف خود «قوانین حرکت نیوتن) را ارائه کرد که به خوبی با تجربه سازگار بودند.

- بدین ترتیب فیزیک جایگاه علمی و عملی خود را یافت و روزبه روز پیشرفت کرد، مباحث آن گسترده تر شد، تا آنجا که قوانین آن از ریزترین ابعاد اتمی تا وسیعترین ابعاد نجومی را شامل می شود. اکنون فیزیک مانند زنجیری محکم با بقیه علوم مرتبط است و هنوز هم به سرعت در حال گسترش و پیشرفت می باشد.

نقش فیزیک در زندگی

- هر فرد بزرگ یا کوچک، درس خوانده یا بیسواد ، شاغل یا بیکار خواه ناخواه با فیزیک زندگی می کند. عمل دیدن و شنیدن ، عکس العمل در برابراتفاقات ، حفظ تعادل در راه رفتن و... نمونه هایی از امور عادی ولی در عین حال وابسته به فیزیک می باشند.

- پدیده های جالب طبیعی نظیر رنگین کمان ، سراب ، رعد و برق ، گرفتگی ماه و خورشید و... همه با فیزیک توجیه می شوند.

- برنامه های رادیو ، تلویزیون ، ماهواره ، اینترنت ، تلفن و... با کمک فیزیک مخابره می شوند.

- با این نمونه های ساده ، می توان تصور کرد که اگر فیزیک نبود و اگر روزی قوانین فیزیک بر جهان حاکم نباشند، زندگی و ارتباطات مردم شدیدا دچار مشکل می شود.

فیزیک و سایر علوم

- فیزیک، دینامیک و ساختار درونی اتم ها را توصیف می کند. و از آنجا که همه مواد شامل اتم هستند، پس هر علمی که در ارتباط با ماده باشد، با فیزیک نیز مرتبط خواهد بود. علومی نظیر: شیمی ، زیست شناسی ، زمین شناسی ، پزشکی ، دندانپزشکی ، داروسازی ، دامپزشکی ، فیزیولوژی ، رادیولوژی ، مهندسی مکانیک ، برق ، الکترونیک ، مهندسی معدن ، معماری ، کشاورزی و ... .

- فیزیک درصنعت ، معدن ، دریانوردی ، هوانوردی و... نیزکاربرد فراوان دارد. اینکه ابزار کار هر شغلی و هر علمی مبتنی براستفاده ازقوانین و مواد فیزیکی است، نقش اساسی فیزیک درسایر علوم و رشته ها را نمایان می کند. علاوه برآن استفاده روزافزون از اشعه لیزر در جراحی ها و دندانپزشکی، رادیوگرافی با اشعه ایکس در رادیولوژی ، جوشکاری صنعتی و... نمونه هایی از کاربردهای بیشمار فیزیک در علوم دیگرمی باشند.

فیزیک و آینده

با این روند رو به رشدی که علم فیزیک در کنار سایر علوم دارد، می توان امیدوار بود که در آینده به چراها و چگونگی های عالم طبیعت پاسخ داده شود و این دنیای فیزیک سکوی پرتاب به عالم متا فیزیک باشد.

در آینده شاید فیزیک بتواند ...

- رسیدن به سرعت نور و فراتر از آن را مقدور سازد.

- مثالهای عجیب نسبیت را عملی کند.

- معمای مثلث برمودا را حل کند.

- واقعیت یوفوها( بشقاب پرنده ها) را مشخص کند.

- به راز وجود یا عدم وجود هوش فرا زمینی واقف شود. و...



خرید و دانلود تحقیق درمورد فیزیک و زندگی 4ص


تحقیق درمورد فیزیک فضا و اتمسفر

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

فیزیک فضا و اتمسفر

فیزیک فضا (Spase Physics)

انسان کنجکاو همواره در جریان پیشرفت علوم مختلف از فضای بالای سر خود غافل نبوده ‌است. و تلاش فوق‌العاده زیادی را جهت گشودن اسرار آن انجام داده‌است. انواع ماهواره‌های فضایی ، سفینه‌های فضایی ، تلسکوپهای گوناگون از جمله ابزار و وسایلی هستند که در این راستا توسط انسان ایجاد شده‌اند.

فیزیک فضا یکی از این شاخه‌های علم فیزیک است که تا اندازه‌ای پاسخگوی هزاران سوال موجود در ذهن بشر در مورد فضا می‌باشد. بخشی از فیزیک فضا که در آن اجرام آسمانی مورد مطالعه قرار می‌گیرد، مکانیک سماوی است. در این بخش نیروهای موثر بر حرکت اجسامی نظیر سیارات ، ماهواره‌ها و پروپهای مصنوعی مورد مطالعه قرار می‌گیرد.

قوانین کپلر

در سال 1619 ، کپلر در مورد حرکت سیارات سه قانون اساسی خود را با استفاده از مشاهدات تیکو براهه بیان کرد. قوانین کپلر که پایه و اساس قوانین نیوتن و مکانیک کلاسیک برای حرکت سیارات است، عبارتند از :

- حرکت سیارات به ‌دور خورشید در یک مدار بیضوی انجام می‌گیرد که خورشید در یکی از کانونهای آن بیضی قرار دارد.

- مدار یک سیاره به ‌دور خورشید ، سطحی را تشکیل می‌دهد که این سطح جاروب شده توسط خط واصل بین سیاره و خورشید با زمان حرکت سیاره نسبت مستقیم دارد.

- نسبت بین مربع دوره تناوب گردش هر سیاره و مکعب نصف محور بزرگ مدار بیضوی ، در مورد هر سیاره منظومه شمسی عدد یکسانی است.

فیزیک اتمسفر

فیزیک فضا یک علم بسیار جدید است. با وجود این یک تکنولوژی مهم سبب حل بسیاری از ناشناخته‌های قبلی بوده ‌است. محیط ، فضایی از اندرکنش‌های زیادی مانند نیروی گرانشی ، ماگنتواستاتیک ، الکترواستاتیک ، الکترومغناطیس و ... ، نسبت به زمان تغییرات مهمی را نشان می‌دهد که طبیعت ترکیب و توزیع ماده ، دمای گاز بین ستاره‌ای را تغییر می‌دهد.

در فیزیک اتمسفر پارامترهای مهم معین در هر نقطه از اتمسفر مانند فشار ، چگالی ، دما ، میدان مغناطیسی زمین ، میدان الکتریکی ، تابش الکترومغناطیسی موجود در اتمسفر ، ذرات باردار و شهاب سنگها مورد مطالعه قرار می‌گیرند.

برهمکنش نور خورشید با اتمسفر

انرژی تابش خورشیدی در مسیر فاصله خورشید تا زمین در اثر برخورد با گازهای موجود در اتمسفر زمین در فرایندهای مختلفی شرکت می‌کند. در اثر این فرایندها قسمت اعظمی از تابش خورشیدی که برای انسان و موجودات زنده زیان ‌آور است، جذب می‌گردند. تعدادی از این پدیده‌های برهمکنشی عبارتنداز :

- جذب تابش در اتمسفر :

در اتمسفر زمین عناصری مانند اوزن ، اکسیژن ، ازت ، هلیوم ، گاز کربنیک ، هیدروژن و گازهای دیگر وجود دارد. همچنین می‌دانیم که امواج الکترومغناطیسی از ذراتی به‌ نام فوتون تشکیل شده‌اند. این فوتونها بعد از گسیل از خورشید توسط عناصر موجود در جو زمین تحت فرایندهای مختلف مانند پدیده فوتوالکتریک ، اثر کامپتون و ... جذب می‌شوند.

-پدیده یونش :

در اثر برهمکنش فوتون با گازهای موجود در جو زمین ، این گازها یونیزه می‌شوند. اتمهای یونیزه دوباره در اثر برخورد با الکترونهای موجود در اتمسفر در فرایند ترکیب مجدد شرکت می‌کنند. این فرایندها همچنین در جو زمین انجام می‌شوند. یکی از نتایج این فرایندها ایجاد پلاسما در اتمسفر می‌باشد.

تابش فیزیک امواج کوتاه خورشیدی



خرید و دانلود تحقیق درمورد فیزیک فضا و اتمسفر


تحقیق درمورد فیزیک دان ایرانی و شگفت آفرینی تازه سیاه چاله ها

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

فیزیک دان ایرانی و شگفت آفرینی تازه سیاه چاله ها

یک فیزیک دان ایرانی مقیم دانشگاه میسوری در کلمبیا هنگام بررسی نتایج نظریه نسبیت اینشتین روی ذراتی زیر اتمی که با سرعت زیاد در حرکتند موفق به کشف اثر تازه و شناخته نشده ای از سیاه چاله ها شده است.

سیاه چاله ها که در زمره ی عجیب ترین اجرام کیهانی به شمار می آید باز هم شگفتی آفریده اند و اخترشناسان را حیرت زده کرده اند. به نوشته ی هفته نامه ی علمی نیوساینتیست بهرام مشحون و همکارش کارمن چیکانک در دانشگاه میسوری در بررسی های علمی خود به این نکته پی برده اند که سیاه چاله ها می توانند نیروهای جزر و مدی عجیبی تولید کنند که بر ذرات با سرعت زیاد تاثیری متفاوت از ذرات با سرعت کم باقی می گذارد. این اثر پیشبینی نشده به این معناست که سیاه چاله ای که در مرکز کهکشان خود ما قرار دارد می تواند منبع پرتوهای کیهانی بسیار پرقدرت و نادری باشد که اخترشناسان تاثیر مخرب آنها را در جو زمین مشاهده کرده اند اما تاکنون نتوانسته اند توضیحی برای منشا شان پیدا کنند.

نیروهای جزر و مدی بر اساس نظریه ی نیوتونی هنگامی ظاهر می شوند که تاثیر نیروی جاذبه به واسطه ازدیاد فاصله کم می شود به عنوان مثال 2 ذره که در فواصل متفاوتی نسبت به یک سیاه چاله قرار دارند تحت تاثیر 2 نیروی مختلف قرار می گیرند و یکی از آنها که نزدیک تر است شتاب بیشتری پیدا می کند. اما توضیحی که از طریق فیزیک نیوتونی به دست می آید برای شرایطی که در نزدیک سیاه چاله ها برقرار است کفایت نمی کند. اخترشناسان از مدت ها قبل به این نکته پی برده بودند که در پلاسما(ماده در دما و فشار زیاد) که اطراف سیاه چاله ها در گردش است ذرات بنیادی و زیر اتمی با سرعت بسیار زیاد فراوانند.

مشحون و همکارش در تلاش محاسبه این امر بودند که این ذرات در میدان جاذبه قدرتمند سیاه چاله ها چگونه رفتار می کنند. این 2 فیزیکدان دریافتند که تاثیر میدان جاذبه سیاه چاله ها روی ذراتی که با سرعت کم در این میدان حرکت می کنند دقیقا به همان نحو است که فیزیک نیوتن پیشبینی می کند اما در مورد ذراتی که با سرعت نزدیک به سرعت نور حرکت می کنند نتایج به دست آمده کاملا خلاف انتظار بود. ذراتی که با سرعتی بیش از 70درصد سرعت نور300هزار کیلومتر در ثانیه حرکت می کنند رفتارشان تابع جهت حرکتشان است.

ذرات پرسرعتی که در امتداد محور چرخش سیاه چاله ها حرکت می کنند از شتاب حرکتشان نسبت به ذرات کند کاسته می شود اما ذرات تند سرعتی که در جهت عمود بر این محور سیر می کنند شتابی بسیار زیاد و انرژی حیرت انگیز و عظیم کسب می کنند.

نتایج بدست آمده به وسیله مشحون و همکارش شماری از رصد ها و مشاهدات توضیح ناپذیری را که اخترشناسان در گذشته انجام داده بودند قابل فهم ساخته است. از جمله این امور افشانه های بسیار پر قدرت از جنس ذرات زیر اتمی است که از قطب های اجرام کیهانی موسوم به((مایکروکازارها)) به بیرون پرتاب می شوند. تلقی خترشناسان آن است که مایکروکازارها سیاه چاله ها را درون خود پنهان ساخته اند. آنچه که موجب حیرت اخنرشناسان بود آن است که این ذرات پر انرژی دارای شتاب کاهش یابنده هستند. علاوه بر این از تحقیقات مشحون و همکارش چنین بر می آید که رویداد های حیرت انگیز دیگری نیز در جهات دیگر و هنگام حرکت ذرات پر شتاب رخ می دهد که هنوز مشاهده نشده است. به اعتقاد مشحون نیروهای جزر و مدی کند کننده تنها در زاویه55 درجه از محور یک سیاه چاله ظهور می یابد و تنها در این زاویه است که ذرات زیر اتمی شتاب منفی پیدا می کنند و از سرعتشان کاسته می شود. در همه جهت و زوایای دیگر حول این محور این نوع ذرات شتاب مثبت بدست می آورند و براساس نظریه اینشتین سرعت این ذرات می تواند تا سرعت نور بالا برود. اگر نظریه مشحون و همکارش درست باشد سیاه چاله هایی که در کهکشان ما قرار دارند دائما ذرات پر شتاب و پر سرعتی عمدتا از جنس پروتون را به بیرون پرتاب می کنند که انرژی شان هنگامی که به زمین می رسند بیش از1020الکترون ولت است. به گفته مشحون می توان نظریه پیشنهادی او و همکارش را با مقایسه رابطه میان جهت ورود پرتوهای کیهانی مافوق پرقدرت به جو زمین و موقعیت مایکروکازار ها در کهکشان راه شیری را مورد آزمایش قرار داد.

چگاله های گرما

برای ساختن چگاله ی بوز-آینشتاین فیزیکدانان معمولا گاز های اتمی را در چند میلیاردم یک درجه ی کلوین سرد می کنند. به تازگی گزینه ی جدیدی مطرح شده که می توان این سیستم های کوانتمی درشت مقیاس را در دما های نسبتا بالا با استفاده از پولاریتون ها کاوید.

بر اساس مکانیک کوانتمی، طبیعت موجی یک شئ به آن اجازه می دهد تا از میان مانعی بگذرد که از نظر فیزیک کلاسیک مطلقا غیر قابل نفوذ است.

پس چرا نمی توانیم تونل زنی و دیگر پدیده های کوانتمی را در زندگی روزمره مان ببینیم؟

دلیل اینست که این پدیده ها تنها در مقیاس طول موج اتم هایی اتفاق می افتد که اشیا ریز- مقیاس را شکل می دهند، و این طول موج ها بسیار کوچکتر از آنند که اثرشان دیده شود. برابر فرمول (در این فرمول p اندازه ی حرکت است و برابر است با حاصل جرم در سرعت)، طول موج دوبروی یک اتم نوعی در دمای اتاق در حدود است.

برای مشاهده ی رفتار موجی یک ذره ما باید اندازه حرکت آن را کاهش دهیم. اگر اندازه حرکت گروهی از ذرات آنقدر پایین باشد که طول موج ذرات با فاصله بینشان برابر شود، تابع موج منحصر به فرد ذرات شروع به انطباق سازنده می کنند یا به عبارتی افزایش می یابند. وضعیت بسیار منظمی که حاصل می شود به نام چگالش بوز- آینشتاین شناخته می شود که در آن تمام ذرات همچون یک موج واحد رفتار می کنند. این پدیده تنها در میان ذراتی به نام بوزون ها که دارای اندازه حرکت زاویه ای و اسپین صحیح هستند شکل می گیرد.

از زمان ساخته شدن اولین چگاله ی بوز- آینشتاین (BEC) از اتم های گاز روبیدیم، 12 پیش، فیزیکدانان علاقمند بوده اند که به این اندازه حرکت بسیار کوچک از طریق سرد کردن ذرات (کم کردن سرعتشان) برسند. اما دمای مورد نیاز فوق العاده پایین است، در مجموع تنها چند میلیاردم درجه، که نیازمند تکنیک های بسیار پیشرفته سرمایش از جمله سرمایش لیزری می باشد. گزینه ی دیگر که هماکنون توسط لابراتوار های بسیاری در سرتاسر دنیا دنبال می شود، ساختن نوع خاصی از ذرات بسیار سبک به نام پولاریتون است. پولاریتون ها که بوزون هایی هستند متشکل از یک جفت حفره- الکترون و یک فوتون، میلیارد ها بار سبک تر از اتم های روبیدیم هستند، بنابراین باید قادر باشند BEC را در دما های بسیار بالاتر تشکیل دهند.

اولین نشانه ی چگاله ی پولاریتون سال گذشته زمانی که Jacek Kasprazk از دانشگاه ژوزف فوریه در فرانسه به همراه همکارانی در سویس و انگلستان، از لیزر برای افزایش پیوسته چگالی پولاریتون ها در یک ریز حفره ی نیمه رسانا که در دمای نسبتا گرم 19K قرار دارد استفاده کردند، بدست آمد. آنها دریافتند که بالای چگالی بحرانی پولاریتون ها شروع می کنند به نشان دادن رفتار همدوس یک BEC.



خرید و دانلود تحقیق درمورد فیزیک دان ایرانی و شگفت آفرینی تازه سیاه چاله ها


تحقیق در مورد کاربرد لیزر در فیزیک و شیمی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 16 صفحه

 قسمتی از متن .doc : 

 

مقدمه:

اختراع لیزر و تکامل آن وابسته به معلومات پایه ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده اند. بنابراین طبیعی است که استفاده از لیزر در فیزیک و شیمی از اولین کاربردهای لیزر باشند

رشته دیگری که در آن لیزر نه تنها امکانات موجود را افزایش داده بلکه مفاهیم کاملا جدیدی را عرضه کرده است طیف نمایی است. اکنون با بعضی از لیزرها می توان پهنای خط نوسانی را تا چند ده کیلوهرتز باریک کرد ( هم در ناحیه مرئی و هم در ناحیه فروسرخ ) و با این کار اندازه گیری های مربوط به طیف نمایی با توان تفکیک چند مرتبه بزرگی ( 3 تا 6) بالاتر از روش های معمولی طیف نمایی امکان پذیر می شوند. لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد که در آن تفکیک طیف نمایی خیلی بالاتر از حدی است که معمولا با اثرهای پهن شدگی دوپلر اعمال می شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است.

در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) به ویژه در فون تشخیص باید از روش های (پراکندگی تشدیدی رامان ) و ( پراکندگی پاد استوکس همدوس رامان ) (CARS) نام ببریم. به وسیله این روشها می توان اطلاعات قابل ملاحظه ای درباره خصوصیات مولکولهای چند اتمی به دست آورد ( یعنی فرکانس ارتعاشی فعال رامن - ثابتهای چرخشی و ناهماهنگ بودن فرکانس). روش CARS همچنین برای اندازه گیری غلظت و دمای یک نمونه مولکولی در یک ناحیه محدود از فضا به کار می رود. از این توانایی برای بررسی جزئیات فرایند احتراق شعله و پلاسما ( تخلیه الکتریکی) بهره برداری شده است.شاید جالبتری کاربرد شیمیایی ( دست کم بالقوه ) لیزر در زیمنه فوتو شیمی باشد. اما باید در نظر داشته باشیم به خاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است که ارزش محصول نهایی خیلی زیاد باشد. یکی از این موارد جداسازی ایزوتوپها است.

کاربرد در زیست شناسی

از لیزر به طور روزافزونی در زیست شناسی و پزشکی استفاده می شود. اینجا هم لیزر می‌تواند ابزار تشخیص و یا وسیله برگشت ناپذیر مولکولهای زنده یک سلول و یا یک بافت باشد. ( زیست شناسی نوری و جراحی لیزری) در زیست شناسی مهمترین کاربرد لیزر به عنوان یک وسیله تشخیصی است. ما در اینجا تکنیک های لیزری زیر را ذکر می کنیم : الف) فلوئورسان القایی به وسیله تپهای فوق العاده کوتاه لیزر در DNA در ترکیب رنگی پیچیده DNA و در مواد رنگی موثر در فتوسنتز

ب) پراکندگی تشدیدی رامان به عنوان روشی برای مطالعه ملکولهای زنده مانند هموگلوبین و یا رودوپسین ( عامل اصلی در سازوکار بینایی)

ج) طیف نمایی همبستگی فوتونی برای بدست آوردن اطلاعاتی در مورد ساختار و درجه انبوهش انواع ملکولهای زنده

د) روشهای تجزیه فوتونی درخشی پیکوثانیه ای برای کاوش رفتار دینامیکی مولکولهای زنده در حالت برانگیخته

هـ) ویژه باید از روشی موسوم به میکروفلوئورمتر جریان یاد کرد. در اینجا سلولهای پستانداران در حالت معلق مجبور می شوند که از یک اتاقک مخصوص جریان عبور کنند که در آنجا ردیف می شوند و سپس یکی یکی از باریکه کانونی شده لیزر یونی آرگون عبور می‌کنند. با قرار دادن یک آشکارساز نوری در جای مناسب می توان این کمیت ها را اندازه‌گیری کرد :

الف) نورماده ای رنگی که به یک جزء خاص تشکیل دهنده سلول یعنی DNA متصل ( که اطلاعاتی راجع بع مقدار آن جزء تشکیل دهنده سلول را به دست می دهد) امتیاز میکروفلوئورمتری جریان در این است که اندازه گیری ها را برای تعداد زیادی از سلولها در مدت زمان محدود میسر می سازد. به این وسیله می توانیم دقت خوبی برای اندازه گیری آماری داشته باشیم.

در زیست شناسی از لیزر برای ایجاد تغییر برگشت ناپذیر در ملکولهای زنده و یا اجزای تشکیل دهنده سلول هم استفاده می شود. به ویژه تکنیک های معروف به ریز - باریکه را ذکر می کنیم. در اینجا نور لیزر ( مثلا یک لیزر Ar+ تپی ) به وسیله یک عدسی شیئی میکروسکوپ مناسب در ناحیه ای از سلول با قطری در حدود طول موج لیزر (µm) کانونی می شود منظور اصلی از این تکنیک مطالعه رفتار سلول پس از آسیبی است که با لیزر در ناحیه خاصی از آن ایجاد شده است.

در زمینه پزشکی بیشترین کاربرد لیزرها در جراحی است ( جراحی لیزری) اما در بعضی موارد لیزر برای تشخیص نیز به کار می رود. ( استفاده بالینی از میکروفلوئورمتر جریان - سرعت سنجی دوپلری برای اندازه گیری سرعت خون - فلوئورسان لیزری - آندوسکوپی نای برای آشکارسازی تومورهای ریوی در مراحل اولیه در جراحی از باریکه کانونی شده لیزر ( اغلب لیزر CO2) به جای چاقوی جراحی معمولی ( یا برقی ) استفاده می شود. باریکه فروسرخ لیزر CO2 به شدت به وسیله ملکولهای آب موجود در بافت جذب می شود و موجب تبخیر سریع این ملکولها و در نتیجه برش بافت می شود. برتریهای اصلی چاقوی لیزری را می توان به صورت زیر خلاصه کرد :

الف) دقت بسیار زیاد به ویژه هنگامی که باریکه با یک میکروسکوپ مناسب هدایت شود ( جراحی لیزر)

ب) امکان عمل در نواحی غیر قابل دسترس.. بنابراین عملا هر ناحیه از بدن را که با یک دستگاه نوری مناسب ( مثلا عدسی ها و آینه ها) قابل مشاهده باشد می توان به وسیله لیزر جراحی کرد.

ج) کاهش فوق العاده خونروی در اثر برش رگهای خونی به وسیله باریکه لیزر ( قطر رگی حدود mm0/5 )

د) آسیب رسانی خیلی کم به بافتهای مجاور ( حدود چند میکرومتر) اما در مقابل این برتریها باید اشکالات زیر را هم در نظر داشت :

الف) هزینه زیاد و پیچیدگی دستگاه جراحی لیزری

ب) سرعت کمتر چاقوی لیزری

ج) مشکلات قابلیت اعتماد و ایمنی مربوط به چاقوی لیزری

با این اشاره اجمالی به جراحی لیزری اکنون می خواهیم به شرح مفصلتری از تعدادی از این کاربردها بپردازیم . در چشم بیماران مبتلا به مرض قند استفاده شده است در این مورد باریکه لیزر به وسیله عدسی چشم بر روی شبکیه کانونی می شود. پرتو سبز لیزر به شدت به وسیله گلبول های سرخ جذب می شود و اثر حرارتی حاصل باعث اتصال دوباره شبکیه یا انعقاد رگهای آن می شود. اکنون لیزر استفاده روزافزونی در گوش و حلق و بینی پیدا کرده است. استفاده از لیزر در این شاخه از جراحی جذابیت خاصی دارد. زیرا با اعضایی مانند نای - حلق و گوش میانی سروکار دارد که به علت عدم دسترسی به آن ها جراحی معمولی مشکل است. اغلب در این مورد لیزر همراه با یک میکروسکوپ استفاده می شود. همچنین لیزر برای جراحی داخل دهان نیز مفید است ( برای برداشتن غده های مخاطی ). امتیازات



خرید و دانلود تحقیق در مورد کاربرد لیزر در فیزیک و شیمی