لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 16 صفحه
قسمتی از متن .doc :
مقدمه:
اختراع لیزر و تکامل آن وابسته به معلومات پایه ای است که در درجه اول از رشته فیزیک و بعد از شیمی گرفته شده اند. بنابراین طبیعی است که استفاده از لیزر در فیزیک و شیمی از اولین کاربردهای لیزر باشند
رشته دیگری که در آن لیزر نه تنها امکانات موجود را افزایش داده بلکه مفاهیم کاملا جدیدی را عرضه کرده است طیف نمایی است. اکنون با بعضی از لیزرها می توان پهنای خط نوسانی را تا چند ده کیلوهرتز باریک کرد ( هم در ناحیه مرئی و هم در ناحیه فروسرخ ) و با این کار اندازه گیری های مربوط به طیف نمایی با توان تفکیک چند مرتبه بزرگی ( 3 تا 6) بالاتر از روش های معمولی طیف نمایی امکان پذیر می شوند. لیزر همچنین باعث ابداع رشته جدید طیف نمایی غیر خطی شد که در آن تفکیک طیف نمایی خیلی بالاتر از حدی است که معمولا با اثرهای پهن شدگی دوپلر اعمال می شود. این عمل منجر به بررسیهای دقیقتری از خصوصیات ماده شده است.
در زمینه شیمی از لیزر هم برای تشخیص و هم برای ایجاد تغییرات شیمیایی برگشت ناپذیر استفاده شده است. ( فوتو شیمی لیزری) به ویژه در فون تشخیص باید از روش های (پراکندگی تشدیدی رامان ) و ( پراکندگی پاد استوکس همدوس رامان ) (CARS) نام ببریم. به وسیله این روشها می توان اطلاعات قابل ملاحظه ای درباره خصوصیات مولکولهای چند اتمی به دست آورد ( یعنی فرکانس ارتعاشی فعال رامن - ثابتهای چرخشی و ناهماهنگ بودن فرکانس). روش CARS همچنین برای اندازه گیری غلظت و دمای یک نمونه مولکولی در یک ناحیه محدود از فضا به کار می رود. از این توانایی برای بررسی جزئیات فرایند احتراق شعله و پلاسما ( تخلیه الکتریکی) بهره برداری شده است.شاید جالبتری کاربرد شیمیایی ( دست کم بالقوه ) لیزر در زیمنه فوتو شیمی باشد. اما باید در نظر داشته باشیم به خاطر بهای زیاد فوتونهای لیزری بهره برداری تجاری از فوتوشیمی لیزری تنها هنگامی موجه است که ارزش محصول نهایی خیلی زیاد باشد. یکی از این موارد جداسازی ایزوتوپها است.
کاربرد در زیست شناسی
از لیزر به طور روزافزونی در زیست شناسی و پزشکی استفاده می شود. اینجا هم لیزر میتواند ابزار تشخیص و یا وسیله برگشت ناپذیر مولکولهای زنده یک سلول و یا یک بافت باشد. ( زیست شناسی نوری و جراحی لیزری) در زیست شناسی مهمترین کاربرد لیزر به عنوان یک وسیله تشخیصی است. ما در اینجا تکنیک های لیزری زیر را ذکر می کنیم : الف) فلوئورسان القایی به وسیله تپهای فوق العاده کوتاه لیزر در DNA در ترکیب رنگی پیچیده DNA و در مواد رنگی موثر در فتوسنتز
ب) پراکندگی تشدیدی رامان به عنوان روشی برای مطالعه ملکولهای زنده مانند هموگلوبین و یا رودوپسین ( عامل اصلی در سازوکار بینایی)
ج) طیف نمایی همبستگی فوتونی برای بدست آوردن اطلاعاتی در مورد ساختار و درجه انبوهش انواع ملکولهای زنده
د) روشهای تجزیه فوتونی درخشی پیکوثانیه ای برای کاوش رفتار دینامیکی مولکولهای زنده در حالت برانگیخته
هـ) ویژه باید از روشی موسوم به میکروفلوئورمتر جریان یاد کرد. در اینجا سلولهای پستانداران در حالت معلق مجبور می شوند که از یک اتاقک مخصوص جریان عبور کنند که در آنجا ردیف می شوند و سپس یکی یکی از باریکه کانونی شده لیزر یونی آرگون عبور میکنند. با قرار دادن یک آشکارساز نوری در جای مناسب می توان این کمیت ها را اندازهگیری کرد :
الف) نورماده ای رنگی که به یک جزء خاص تشکیل دهنده سلول یعنی DNA متصل ( که اطلاعاتی راجع بع مقدار آن جزء تشکیل دهنده سلول را به دست می دهد) امتیاز میکروفلوئورمتری جریان در این است که اندازه گیری ها را برای تعداد زیادی از سلولها در مدت زمان محدود میسر می سازد. به این وسیله می توانیم دقت خوبی برای اندازه گیری آماری داشته باشیم.
در زیست شناسی از لیزر برای ایجاد تغییر برگشت ناپذیر در ملکولهای زنده و یا اجزای تشکیل دهنده سلول هم استفاده می شود. به ویژه تکنیک های معروف به ریز - باریکه را ذکر می کنیم. در اینجا نور لیزر ( مثلا یک لیزر Ar+ تپی ) به وسیله یک عدسی شیئی میکروسکوپ مناسب در ناحیه ای از سلول با قطری در حدود طول موج لیزر (µm) کانونی می شود منظور اصلی از این تکنیک مطالعه رفتار سلول پس از آسیبی است که با لیزر در ناحیه خاصی از آن ایجاد شده است.
در زمینه پزشکی بیشترین کاربرد لیزرها در جراحی است ( جراحی لیزری) اما در بعضی موارد لیزر برای تشخیص نیز به کار می رود. ( استفاده بالینی از میکروفلوئورمتر جریان - سرعت سنجی دوپلری برای اندازه گیری سرعت خون - فلوئورسان لیزری - آندوسکوپی نای برای آشکارسازی تومورهای ریوی در مراحل اولیه در جراحی از باریکه کانونی شده لیزر ( اغلب لیزر CO2) به جای چاقوی جراحی معمولی ( یا برقی ) استفاده می شود. باریکه فروسرخ لیزر CO2 به شدت به وسیله ملکولهای آب موجود در بافت جذب می شود و موجب تبخیر سریع این ملکولها و در نتیجه برش بافت می شود. برتریهای اصلی چاقوی لیزری را می توان به صورت زیر خلاصه کرد :
الف) دقت بسیار زیاد به ویژه هنگامی که باریکه با یک میکروسکوپ مناسب هدایت شود ( جراحی لیزر)
ب) امکان عمل در نواحی غیر قابل دسترس.. بنابراین عملا هر ناحیه از بدن را که با یک دستگاه نوری مناسب ( مثلا عدسی ها و آینه ها) قابل مشاهده باشد می توان به وسیله لیزر جراحی کرد.
ج) کاهش فوق العاده خونروی در اثر برش رگهای خونی به وسیله باریکه لیزر ( قطر رگی حدود mm0/5 )
د) آسیب رسانی خیلی کم به بافتهای مجاور ( حدود چند میکرومتر) اما در مقابل این برتریها باید اشکالات زیر را هم در نظر داشت :
الف) هزینه زیاد و پیچیدگی دستگاه جراحی لیزری
ب) سرعت کمتر چاقوی لیزری
ج) مشکلات قابلیت اعتماد و ایمنی مربوط به چاقوی لیزری
با این اشاره اجمالی به جراحی لیزری اکنون می خواهیم به شرح مفصلتری از تعدادی از این کاربردها بپردازیم . در چشم بیماران مبتلا به مرض قند استفاده شده است در این مورد باریکه لیزر به وسیله عدسی چشم بر روی شبکیه کانونی می شود. پرتو سبز لیزر به شدت به وسیله گلبول های سرخ جذب می شود و اثر حرارتی حاصل باعث اتصال دوباره شبکیه یا انعقاد رگهای آن می شود. اکنون لیزر استفاده روزافزونی در گوش و حلق و بینی پیدا کرده است. استفاده از لیزر در این شاخه از جراحی جذابیت خاصی دارد. زیرا با اعضایی مانند نای - حلق و گوش میانی سروکار دارد که به علت عدم دسترسی به آن ها جراحی معمولی مشکل است. اغلب در این مورد لیزر همراه با یک میکروسکوپ استفاده می شود. همچنین لیزر برای جراحی داخل دهان نیز مفید است ( برای برداشتن غده های مخاطی ). امتیازات
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 36 اسلاید
قسمتی از متن .ppt :
فیزیک پایه 1( مکانیک)
هدفهای کلی درس
آشنایی با:
فیزیک ، مفهوم، مدل ، قانون ونظریه
بردارها: ضرب نرده ای وبرداری
ا نواع حرکت: یک بعدی و دوبعدی
حرکت سقوطی آزاد و دایره ای
حرکت نسبی
دینامیک ذره : قوانین نیوتن و اصطکاک
مفاهیم کار ، انرژی وتوان
پایستگی انرژِ ی : نیروهای پایستارو غیر پایستار
انرژی جنبشی و پتانسیل
تکانه خطی و قانون پایستگی تکانه خطی
سیستم ذرات : مرکز جرم ، حرکت مرکز جرم
دوران جسم صلب حول محورثابت : سینماتیک دورانی
دینامیک دورانی :تکانه زاویه ای و پایستگی آن
گرانش : قانون گرانش نیوتن
حل مسائل فیزیک مکانیک
ادامه فصل دوازدهم...
تکانه زاویه ای ، تعادل اجسام صلب
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
تاریخچه
برای بررسی تاریخچه فیزیک هستهای لازم است ابتدا تاریخچه اتم را مطالعه کنیم. تمام مواد پیرامون ما از مولکول تشکیل شده است، مولکول هم به نوبه خود از اتم تشکیل شده است. دانشمندان و فلاسفه یونانی حدس و گمان میکردند که اتم تجزیه ناپذیر است. یکی از این دانشمندان از جمله دموکرتیوس (Democritus) کلمه اتم را از کلمه یو نانی «اتوموس» که به معنای «غیر قابل تجزیه» میباشد اقتباس کردند. این حدس و گمان دانشمندان یونانی حدود هزار سال دوام آورد، چند دهه طول کشید که نظریه غیر قابل تجزیه بودن اتم رد شد. اولین و اساسیترین نتیجه تحقیقات ثابت کرد که اتم شامل دو جزء اصلی میباشد:
هسته سنگین که تقریبا تمام جرم اتم را در خود دارد.
پوستهای سبک که از ذرات الکتریسیته (الکترون) ساخته شده است. این الکترونها با سرعت فوق العاده زیادی به دور هسته در حرکت بوده و هرگز به روی آن سقوط نمیکنند.
ساختار هسته
تا آنجا که به ساختار هستهای مربوط است میتوان هسته اتم را به عنوان یک جرم نقطهای و یک بار نقطهای در نظر گرفت.
هسته ، شامل تمامی بار مثبت و تقریبا تمامی جرم اتم است، در نتیجه مرکزی را تشکیل میدهد که الکترونها حول آن میچرخند.
فیزیک هسته ای چیست؟
درون هر اتم میتوان سه ذره ریز پیدا کرد: پروتون، نوترون و الکترون.پروتونها در کنار هم قرار میگیرند و هسته اتم را تشکیل میدهند، در حالی که الکترونها به دور هسته میچرخند. پروتون بار الکتریکی مثبت و الکترون بار الکتریکی منفی دارد و از آنجا که بارهای مخالف ، یکدیگر را جذب میکنند، پروتون و الکترون هم یکدیگر را جذب میکنند و همین نیرو، سبب پایدار ماندن الکترونها در حرکت به دور هسته میگردد. در اغلب حالتها تعداد پروتونها و الکترونهای درون اتم یکسان است، بنابراین اتم درحالت عادی و طبیعی خنثی است.نوترون، بار خنثی دارد و وظیفه اش در هسته، کنار هم نگاه داشتن پروتونهای هم بار است.می دانیم که ذرات با بار یکسان یکدیگر را دفع میکنند .در نتیجه وظیفه نوترونها این است که با فراهم آوردن شرایط بهتر، پروتونها را کنار هم نگاه دارند. ( این کار توسط نیروی هسته ای قوی صورت میگیرد )
تعداد پروتونهای هسته نوع اتم را مشخص میکند. برای مثال اگر 13 پروتون و 14 نوترون، یک هسته را تشکیل دهند و 13 الکترون هم به دور آن بچرخند، یک اتم آلومینیوم خواهید داشت و اگر یک میلیون میلیارد میلیارد اتم آلومینیوم را در کنار هم قرار دهید، آنگاه نزدیک به پنجاه گرم آلومینیوم خواهید داشت! همه آلومینیوم هایی که در طبیعت یافت میشوند، AL27 یا آلومینیوم 27 نامیده میشوند. عدد 27 نشان دهنده جرم اتمی است که مجموع تعداد پروتونها و نوترونهای هسته را نشان میدهد.اگر یک اتم آلومینیوم را درون یک بطری قرار دهید و میلیونها سال بعد برگردید، باز هم همان اتم آلومینیوم را خواهید یافت. بنابراین آلومینیوم 27 یک اتم پایدار نامیده میشود.بسیاری از اتمها در شکل های مختلفی وجود دارند. مثلاً مس دو شکل دارد: مس 63 که 70 درصد کل مس موجود در طبیعت است و مس 65 که 30 درصد بقیه را تشکیل میدهد. شکل های مختلف اتم، ایزوتوپ نامیده میشوند. هر دو اتم مس 63 و مس 65 دارای 29 پروتون هستند، ولی مس 63 دارای 34 نوترون و مس 65 دارای 36 نوترون است. هر دو ایزوتوپ خصوصیات یکسانی دارند و هر دو هم پایدارند.اتمهای ناپایدارتا اوایل قرن بیستم، تصور میشد تمامی اتمها پایدار هستند، اما با کشف خاصیت پرتوزایی اورانیوم توسط بکرل مشخص شد برخی عناصر خاص دارای ایزوتوپ های رادیواکتیو هستند و برخی دیگر، تمام ایزوتوپ هایشان رادیواکتیو است. رادیواکتیو بدان معنی است که هسته اتم از خود تشعشع ساطع میکند.
هیدورژن مثال خوبی از عنصری است که ایزوتوپ های متعددی دارد و فقط یکی از آنها رادیو اکتیو است. هیدروژن طبیعی ( همان هیدروژنی که ما میشناسیم) در هسته خود دارای یک پروتون است و هیچ نوترونی ندارد. ( البته چون فقط یک پروتون درهسته وجود دارد نیازی به نوترون نیست ) ایزوتوپ دیگر هیدروژن، هیدروژن 2 یا دو تریوم است که یک پروتون و یک نوترون در هسته خود جای داده است. دوتریوم، فقط 015/0 درصد کل هیدروژن را تشکیل میدهد و در طبیعت بسیار کمیاب است، با این حال مانند هیدورژن طبیعی رفتار میکند. البته از یک جهت با آن تفاوت دارد و آن، سمی بودن دوتریوم در غلظت های بالاست. دوتریوم هم ایزوتوپ پایداری است، ولی ایزوتوپ بعدی که تریتیوم خوانده میشود، ناپایدار است. تریتیوم که هیدروژن 3 نیز خوانده میشود، در هسته خود یک پروتون و دو نوترون دارد و طی یک واپاشی رادیواکتیو به هلیوم 3 تبدیل میشود. این بدان معنی است که اگر ظرفی پر از تریتیوم داشته باشید و آن را بگذارید و یک میلیون سال بعد برگردید، ظرف شما پر از هلیوم 3 است. هلیوم 3 از 2 پروتون و یک نوترون ساخته شده وعنصری پایدار است ).
در برخی عناصر مشخص، به طور طبیعی همه ایزوتوپها رادیواکتیو هستند. اورانیوم بهترین مثال برای چنین عناصری است که علاوه بر رادیواکتیویته زیاد سنگین ترین عنصر رادیواکتیو هم هست که به
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 15 صفحه
قسمتی از متن .doc :
فیزیک اتمی
مقدمه
فیزیک اتمی- مولکولی که مربوط به فیزیک جدید است از زمانی متولد شد که دانشمندان متوجه شدند کوچکترین جزء در طبیعت اتم نیست بلکه اتم از اجزای کوچکتری به نام الکترونها و هسته تشکیل شده است. یعنی اتم از هستهای تشکیل شده است که الکترونهایی در اطراف آن میگردند
فیزیک اتمی به بررسی نقل و انتقالهای الکترونهای اطراف هسته میپردازد و خواص آنها را مورد بررسی قرار میدهد. یعنی ما در فیزیک اتمی کاری به این نداریم که هسته از چه تشکیل شده است بلکه هسته برایمان مرکزی با بار مثبت است و بیشتر توجه ما جلب الکترونهای اطراف هسته میشود
سابقه ی تاریخی
مطالعه روی عنصرها به حدود ۲۵۰۰ سال پیش برمی گردد. دالتون در سال 1807 با استفاده از واژه یونانی اتم که به معنای تجزیه ناپذیر است ، ذره های سازنده عنصرها را توضیح داد. اگر چه امروز می دانیم که اتمها خود از ذرات کوچکتری تشکیل شده اند، اما هنوز باور داریم که اتم کوچکترین ذره ای است که خواص شیمیایی و فیزیکی یک عنصر به آن بستگی دارد.
جان دالتون نظریه اتمی ماده را به شرح زیر مطرح کرد :
تمام عنصرها از اتم تشکیل شدهاند . اتمها ذراتی تقسیمناپذیر و تخریب ناپذیرند
همهی اتمهای یک عنصر از لحاظ جرم و خواص شیمیایی یکساناند, اما اتمهای عنصرهای مختلف , جرم و خواص شیمیایی متفاوت دارند .
یک ترکیب شیمیایی از به هم پیوستن اتمهای مختلف با نسبتهایی که اعداد صحیح و کوچکاند , تشکیل میشود
یک واکنش شیمیایی تنها شامل ترکیب , تفکیک یا نوآرایی اتمهاست به بیان دیگر , اتمها در جریان یک واکنش شیمیایی نه به وجود میآیند و نه از بین میروند .
در حال حاضر میدانیم که جزء بسیار ناچیزی از ماده در یک واکنش شیمیایی قابل تبدیل به انرژی بوده و از اینرو به جاست که از قانون "بقای جرم و انرژی " صحبت کنیم . همچنین تئوری دالتون نارساییهایی دارد و برای مثال او به وجود مولکول چند اتمی از قبیل H2 و O2 برای یک عنصر پی نبرد و کوچکترین ذرهی همهی عناصر را اتمهای منفرد پنداشت . همچنین آزمایشها نشان دادهاند که همهی اتمهای یک عنصر دقیقاً جرم یکسان ندارند . اما با تغییر واژهی "جرم" به "جرم اتمی میانگین" میتوان تئوری دالتون را به کار برد .
جان دالتون بر اساس تئوری اتمی خود قانون دومی را بیان کرد که مبتنی بر دادههای آزمایشی نبود . این قانون به عناصری مربوط میشود که با هم بیش از یک مادهی مرکب ایجاد میکنند . بنابر قانون دوم دالتون "نسبت جرمهایی از یک عنصر را که به جرم معینی از عنصر دیگر ترکیب میشوند . میتوان با اعداد صحیح کوچکی بیان کرد . " این گزاره را قانون "نسبتهای چندگانه" مینامند .
الکترون نخستین ذره زیر اتمی
اجرای آزمایشهای بسیاری با الکتریسته ، مقدمه ای برای شناخت ساختار درونی اتم بوده است. کشف الکتریسته ساکن، وقوع واکنش شیمیایی به هنگام عبور جریان برق از میان محلول یک ترکیب شیمیایی فلزدار (الکتریسته یا برقکانت) ، و آزمایشهای بسیار روی لوله ی پرتو کاتدی منجر به شناخت الکترون شد. لوله پرتو کاتدی لوله ای شیشه ای است که بیشتر هوای آن خارج شده است.در دو انتهای این لوله دو الکترود فلزی نصب شده است . هنگامی که یک ولتاژ قوی بین این دو الکترود اعمال شود ، پرتوهایی از الکترود منفی (کاتد) به سمت الکترود مثبت (آند) جریان می یابد که به آن پرتوهای کاتدی می گوین. این پرتوها بر اثر برخورد با یک ماده ی فلوئور سنت نور سبز رنگی ایجاد می کنند. تامسون موفق شد نسبت بار به جرم الکترون را به کمک این آزمایشها اندازه گیری کند.پس از آن رابرت میلیکان توانست مقدار بار الکتریکی الکترون را اندازه بگیرد. به این ترتیب جرم الکترون نیز با کمک نسبت بدست آمده تامسون محاسبه شد.
بار الکترون کلون و جرم الکترون کیلوگرم است.
پرتو زایی
در حالی که تامسون روی پرتوهای کاتدی آزمایش می کرد، هم زمان بکرل فیزیک دانی که روی خاصیت فسفر سانس مواد شیمیایی کار می کرد با پدیده ی جالبی روبرو شد. این پدیده پرتوزایی و مواد دارای این خاصیت، پرتوزا نامیده شد.
بعد از آن رادرفورد به این موضوع علاقه مند شد و پس از سالها تلاش فهمید، این تابش خود ترکیبی از سه نوع تابش مختلف آلفا ، بتا، و گاما می باشد.
مدل اتمی تامسون
تامسون پس از کشف الکترون ساختاری برای اتم پیشنهاد کرد که در آن الکترون ها با بار منفی در فضای ابر گونه با بار مثبت پراکنده اند و جرم اتم را مربوط به جرم الکترون ها می دانست ، حال آنکه فضای ابرگونه مثبت را بدو ن جرم می دانست.
یکی از موارد بسیار مهمی که یک مدل اتمی باید توضیح دهد، مسئله جذب و تابش انرژی توسط الکترونها است. در مدل اتمی تامسون الکترونها در مکانهای تعادلشان ثابت می مانند. در اتمهای برانگیخته، مانند اتمهای اجسام در دمای زیاد، الکترونها حول مکانهای تعادلشان ارتعاش می کنند. چون نظریه الکترومغناطیس کلاسیک پیشگویی می کند که یک ذره باردار، هنگامی که دارای شتا است، مانند الکترون مرتعش، تابش تابش الکترومغناطیسی گسیل می دارد، درک کیفی تابش
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .docx ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 11 صفحه
قسمتی از متن .docx :
فیزیک پزشکی
فیزیک پزشکی به یکی از دانشهای پایه اشاره دارد که مفاهیم و کاربرد مجموعه علوم فیزیک را در تشخیص و درمان پزشکی بررسی میکند
این شاخه از دانش، علوم پرتودرمانی، محافظت از پرتو، پرتوشناسی تشخیصی (و زیرشاخههای آن همانند سی تی اسکن، ام آر آی، پت اسکن، و غیره)، و پزشکی هستهای را در بر میگیرد، اما از نظر حرفه و پیشه از مهندسی پزشکی و آنکولوژی مستقل است. تحصیلکردگان و دانشآموختگان این شاخهٔ علمی در خدمات بالینی در مراکز درمانی، کنترل کیفیت و محافظت از تشعشع، پژوهش و توسعه، و فعالیتهای دانشگاهی(مثل آموزش رزیدنتهای پزشکی) به کار مشغول میباشند. تصویربرداری مولکولی که یکی از زیرشاخههای فرعی این رشتهاست، امروزه به تنهایی یک صنعت پنج میلیارد دلاری است.
از زمان پیدایش این شاخه در سالهای پایانی قرن نوزدهم، فیزیک پزشکی ریشه در پژوهش های انجام شده دو جایزه نوبل فیزیک به سالهای ۱۹۵۲ و ۱۹۰۱، و جایزه نوبل شیمی سال ۱۹۴۳ داشته است و از سوی دیگر به نوبهٔ خود مسبب دو جایزه نوبل در پزشکی و فیزیولوژی در سالهای ۱۹۷۹ و ۲۰۰۳ گردیدهاست. در ایران نیز در همان بدو تاسیس دانشگاه تهران در سال ۱۳۱۳، تدریس این دانش توسط متخصصین ایرانی در کشور آغاز گشت. تربیت نیروی متخصص فیزیکدان پزشکی مستلزم تحصیلات فراتر از کارشناسی است. در ایران این رشته هنوز یک رشته نوپاست، ولی با این حال همانند سایر کشورها در حال گسترش و فعالیت است.
امروزه ۱۸٬۰۰۰ فیزیکدان پزشکی در سرتاسر جهان مشغول به کار هستند، و در حالی که بطور سنتی فیزیک رشتهای تحت تسلط مردان بودهاست، زنان موفقی نیز توانستهاند در فیزیک پزشکی موفقیتهای چشمگیری را به نام خود ثبت کنند. بطور مثال، از میان افرادی که برای به رسمیت شناخته شدن این رشته در سازمان بین المللی کار زحمت فراوان کشیدند میتوان اعظم نیرومند-راد از دانشگاه جرجتاون را نام برد
تقسیمبندی
فیزیک پزشکی امروزه عمدتاً به دو شاخهٔ تصویربرداری پزشکی و پرتودرمانی تقسیم میگردد. با این حال فیزیک پزشکیِ نوین گسترهٔ قابل توجهی از دانش ها و فناوریهای متفاوتی را پوشش میدهد و در بر گیرندهٔ موضوعات و مباحث متعددی از رادیوبیولوژی گرفته تا دزیمتری تا پردازش سیگنال در امآرآی است. لذا دشوار بتوان مرزهای مشخصی را برای آن تعریف کرد. اما عموماً فیزیک پزشکی را به چهار دسته مختلف طبقه بندی میکنند که مشخصات هر یک از این بخشها جداگانه در متون زیر آمدهاند. رابطهٔ متقابل این شاخهها با یکدیگر را میتوان با نمودار ون زیر نمایش داد:
/
پرتوشناسی تشخیصی
فیزیک پرتوشناسی تشخیصی در این شاخه از فیزیک پزشکی، با مدالیتههایی همچون سی تی اسکن، ام آر آی (تصویر برداری تشدید مغناطیسی)، سونوگرافی، ماموگرافی، فلوروسکوپی، و رادیوگرافی معمولی میتوان سر و کار داشت.
پرتودرمانی
فیزیک پرتودرمانیدر پزشکی معضلات زیادی (بطور مثال بسیاری از سرطانها) را میتوان نام برد که توسط پرتوزایی (گاما، الکترون، پروتون، و نوترون) مداوا و یا حتی معالجه میشوند. مسئولیت عملکرد و تضمین کارکرداینگونه سیستمها بر عهدهٔ متخصص رادیو تراپی است
پزشکی هستهای
فیزیک پزشکی هستهای با مدالیتههایی نظیر اسپکت، پت اسکن، سامانه های ترکیبی همانند پت-سیتی و اسپکت-سیتی، و نیز روشهای تصویرسازی مولکولی سرو کار دارد. در حقیقت این شاخه نیز زیرمجموعهای از پرتوشناسی تشخیصی است؛
وجه تمایز با مهندسی پزشکی
مرزهای مشخصی بین مهندسی پزشکی و فیزیک پزشکی نمیتوان تعیین کرد و اغلب بین این دو (و نیز رشتههای دیگر) اشتراکات زیادی وجود دارد. اما شاید بتوان گفت که فیزیک پزشکی اساساً یک علم کاربردی در حرفه پزشکی است اهمیت آشنایی با رشته فیزیک پزشکی از آنجا مشخص میشود که امروزه به واسطهٔ پیشرفت سریع تکنولوژی و افزایش روزافزون دستگاههای تخصصی در بیمارستانها و کلینیکها، علاوه بر نیاز به مهندسان پزشکی برای ساخت و نگهداری این دستگاهها، نیاز به متخصصانی است که بتوانند از این دستگاهها به درستی استفادههای بهینه کنند؛ این توانایی بدست نمیآید جز با آموختن تخصصهای منشعب از فیزیک پزشکی.
به عبارت دیگر، در حالیکه تمرکز مهندسی پزشکی روی ساخت، بهبودسازی، و فناوری خودِ تجهیزات پزشکی و تحقیقات مربوط به آن