واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

منابع انرژی تجدید ناپذیر 3ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 3

 

منابع انرژی تجدید ناپذیر

عقیده غالب این است که در دراز مدت (فراتر از آینده) ، انواع انرژی خورشیدی ، پتانسیل فنی لازم برای برآوردن قسمتهای اعظم احتیاجات انرژی جهان را دارد. اما سهم انرژی خورشیدی و دیگر انواع تجدید پذیر ، در کوتاه مدت بسیار کم خواهد بود. انواع انرژی تجدید پذیر عبارتند از: انرژی خورشیدی ، انرژی باد ، انرژی زمین گرمایی ، انرژی بیوماس نوین ، اقیانوسها و پتانسیل آبی کوچک. این منابع انرژی تجدید پذیر ، بایستی در طی عمر اقتصادی سیستمهای فعلی انرژی معمول گردند.

با اینحال ، برای تست موفقیت در تولید ، دسترس پذیری بیشتر به منابع انرژی تجدید پذیر ضرورت دارد. به دلیل شرشت تناوبی و غیردائمی این منابع انرژی (خصوصا خورشیدی و بادی) باید سیستمهای ذخیره کننده برق گسترش یابد و پتانسیل بیشتری از انژیهای تجدید پذیر بدست آید.

مشکلات پیرامون استفاده از منابع انرژی تجدید پذیر

انرژی بیوماس مدرن

با خطر از بین رفتن تنوع زیستی مواجه است. همچنین این منبع با انتشار و نشت مواد آلوده کننده در حد غیر قابل قبول ، با فقدان شقوق دیگر تولید و اثرات بعدی مواجه است.

انرژی جزر و مد

با خطر از بین رفتن زیستگاههای ساحلی همراه است، که می‌تواند اثرات گوناگونی بر بی‌مهرگان ، مهاجرت و اقامت پرندگان ، ماهیها یا دریانوردی و لجن سازی داشته باشند.

انرژی گرمایی اقیانوسها

اثرات ناشناخته تغییرات گرادیان حرارتی ، می‌تواند پی آمدهای وسیعی اعم از اکولوژی و آب و هوایی داشته باشد.

انرژی باد

اثرات بصری توربینها و ایجاد صدا و اختلال در سیستمهای مخابراتی مسائل روشن در مورد انرژی باد هستند، که البته با اعمال شرایطی تا حدود زیادی قابل اصلاح هستند.

انرژی خورشیدی

در مقایسه با سایر انواع موجود انرژی ، کمترین اثر را بر محیط زیست می‌گذارند. ولی باید در مورد متمرکز کننده‌ها و همچنین فیلمها و سیلیکونهای مورد استفاده در فتو ولتائیکها ، احتیاطهای لازم بکار رود.

نتیجه گیری

برای پیشبرد انواع انرژی تجدید پذیر جدید ، توجه به استانداردهای دائمی و حساس زیست محیطی در تمام زمینه‌های عرضه و مصرف انرژی لازم است. و توجه را بر آن دسته از انواع انرژی تمرکز داد که بهترین دور نما را دارند.



خرید و دانلود  منابع انرژی تجدید ناپذیر 3ص


تحقیق. ارتباط الکترون خواهی با انرژی یونش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

ارتباط الکترون خواهی با انرژی یونش

الکترون خواهی یا آفینیته مربوط به فرآیندی است که در آن ، از اتم خنثی یک یون منفی (از طریق بدست آوردن الکترون) بوجود می‌آید. در حالیکه انرژی یونش مربوط به فرآیند تولید یک یون مثبت از اتم خنثی بسبب از دست دادن الکترون است.

علامت قراردادی الکترون خواهی

در فرآیند الکترون خواهی معمولا (ولی نه همیشه) انرژی آزاد می‌شود. اولین الکترون خواهی بیشتر عناصر ، علامت منفی دارد. بعنوان مثال ، الکترون خواهی فلوئور برابر است با 328Kj/mol- = اولین الکترون خواهی و اما برای برخی عناصر مقدار آن مثبت است. مثلا برای نئون عبارت است از 29Kj/mol = اولین الکترون خواهی. علامت مثبت برای الکترون خواهی نشانه آن است که برای تحمیل یک الکترون به اتم مربوط باید کار انجام شود، (یعنی سیستم انرژی جذب کند) تا اتم مورد نظر قادر به جذب الکترون اضافی شود.

علت آزاد شدن انرژی یا جذب انرژی توسط اتم در الکترون خواهی

الکترونی که به اتم خنثی نزدیک می‌شود، از سوی هسته مثبت اتم جذب می‌شود. اما از سوی الکترونهای منفی آن دفع می‌گردد. اگر جاذبه بیش از دافعه باشد، وقتی یون منفی بوجود می‌آید، انرژی آزاد می‌شود. برعکس اگر دافعه بیش از جاذبه باشد، برای تشکیل یون منفی باید به سیستم انرژی داده شود.

تغییرات الکترون خواهی در یک تناوب از جدول تناوبی

قاعدتا یک اتم کوچک باید تمایل بیشتری برای بدست آوردن الکترون از خود نشان دهد تا یک اتم بزرگ، زیرا الکترون افزوده شده به یک اتم کوچک ، بطور متوسط به هسته مثبت نزدیکتر خواهد بود. با توجه به اینکه شعاع اتمی عناصر از یک تناوب از چپ به راست کوچکتر و بار مثبت هسته در همان جهت افزایش می‌یابد، باید انتظار داشت که الکترون خواهی عناصر مربوط ، از چپ به راست در یک تناوب ، مقادیر منفی بیشتری نشان دهد.

موارد استثنایی

مواردی که عناصر از تعمیم بالا تبعیت نمی‌کنند، باید مورد توجه قرار گیرند. مثلا در دوره دوم مقدار الکترون خواهی بریلیوم (دارای پوسته فرعی 2s پر شده) ، نیتروژن (دارای پوسته فرعی 2p نیمه پر شده ) و نئون (با تمام پوسته‌های فرعی پر شده) از قاعده بالا پیروی نمی‌کنند. این عناصر ، آرایش الکترونی نسبتا پایدار دارند و به آسانی الکترون اضافی نمی‌پذیرند.موارد استثنایی همانند را می‌توان در مورد عناصر مشابه به دوره‌های دیگر نیز مشاهده کرد. در هر دوره ، بیشترین تمایل پذیرش الکترون (الکترون خواهی بزرگتر با علامت منفی) در عنصر عضو گروه VIIIA دیده می‌شود. آرایش الکترونی همه اینها از آرایش گاز نجیب یک الکترون کم دارد.

تغییرات الکترون خواهی در یک گروه از جدول تناوبی

در این مورد ، برای تمام گروهها ، نمی‌توان الگوی واحد پیدا کرد. در مورد عناصر گروه VIIIA الکترون خواهی فلوئور ظاهراً غیر عادی است.حجم اتم فلوئور از بقیه عناصر گروه کوچکتر است و می‌توان انتظار داشت که بر اثر جذب الکترون ، بیشترین انرژی را آزاد کند. اما در حالی‌که الکترون افزوده شده به اتم کوچک بشدت توسط هسته ، جذب می‌شود. به همان ترتیب نیز از سوی بقیه الکترونهای موجود در اتم بشدت دفع می‌شود.زیرا هرچه حجم کوچکتر باشد، چگالی بار الکترونهای والانس نیز بیشتر خواهد بود. اعتقاد بر این است که در اتم فلوئور این اثر دافعه اثر جاذبه قوی ناشی از کوچکی اتم را تا حدی خنثی می‌کند.

دومین الکترون خواهی

این فرآیند ، فرآیندی است که در آن یک الکترون به یک یون منفی افزوده می‌شود. برای نمونه در مورد اکسیژن برابر است با 845Kj/mol+ =دومین الکترون خواهی. از آنجا که یک یون منفی و یک الکترون یکدیگر را دفع می‌کنند، در فرآیند افزودن یک الکترون به یک یون منفی نه‌تنها انرژی آزاد نمی‌شود بلکه انجام فرآیند انرژی گیر است و دومین الکترون خواهی تمامی عناصر ، مقدار مثبت دارد.

انرژی تبادل شده در فرآیند تولید یون

انرژی تبادل شده در فرآیند تولید یونی که دو یا چند بار منفی دارد، حاصل جمع جبری تمام الکترون خواهی مربوط است. این حاصل جمع برای تمام یونهای دارای چند بار منفی همیشه مثبت و فرآیند انرژی گیر است.

مقدار انرژی که در فرایند افزایش یک الکترون به یک اتم منفرد گازی شکل در حالت اصلی مبادله می شود، الکترون گیری آن اتم نامیده می شود. در این فرایند، معمولا، انرژی آزاد می شود و بنابراین، الکترون گیری بیشتر عناصر دارای علامت منفی است. ولی الکترون گیری را اغلب به صورت انرژی آزاد شده تعریف می کنند ؛ در منابع علمی که از چنین تعریفی استفاده شده است، مقادیر الکترون گیری که مربوط به آزاد شدن انرژی است، با علامت ثبت نشان داده می شود. تعیین مستقیم الکترون گیری دشوار است و تنها برای معدودی از عناصر انجام شده است. الکترون گیری برخی از عناصر دیگر به طور غیر مستقیم از داده های ترمودینامیکی محاسبه شده اند. بنابراین ، مقادیر الکترون گیری فقط برای معدودی از عناصر در دست است و اغلب این مقادیر دقت زیادی ندارند. تمایل یک اتم کوچک برای پذیرش الکترون بایستی بیشتر از یک اتم بزرگ باشد زیرا در یک اتم کوچک، الکترون افزوده شده، به طور متوسط، به هسته مثبت نزدیک تر است. این گرایش در هر دوره از چپ به راست ، تقریبا پیروی می شود. ولی در دوره دوم ، موارد استثنائی درباره بریلیم (با لایه فرعی2s پر شده)، نیتروژن( با پوسته فرعی 2p نیمه پر) و نئون (با مام لایه های فرعی پر شده) مشاهده می شوند. چنین مواردی برای عناصر نظیر آنها در دوره سوم نیز وجود دارد. عناصری که آرایش الکترونی آنها نسبتا پایدار است، الکترونهای اضافی را به سهولت نمی پذیرند. چون آرایش الکترونی هر یک از عناصر گروه هالوژنها یک الکترون کمتر از آرایش الکترونی گاز نجیب بعدی دارد، هر یک از عناصر این گروه در دوره خود، بیشترین تمایل را برای به دست آوردن یک الکترون را داراست. مقادیر الکترون خواهی هالوژنها، روند کلی الکترون خواهی را در یک گروه نشان می دهد. توانایی جذب الکترون در عناصر گروه هالوژنها، به استثنای فلوئور، از پایین به بالا با کوچک شدن اندازه اتمی افزایش می یابد. ولی تأثیر کوچک شدن اندازه اتم، ممکن



خرید و دانلود تحقیق. ارتباط الکترون خواهی با انرژی یونش


تحقیق درمورد- ارتباط الکترون خواهی با انرژی یونش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

ارتباط الکترون خواهی با انرژی یونش

الکترون خواهی یا آفینیته مربوط به فرآیندی است که در آن ، از اتم خنثی یک یون منفی (از طریق بدست آوردن الکترون) بوجود می‌آید. در حالیکه انرژی یونش مربوط به فرآیند تولید یک یون مثبت از اتم خنثی بسبب از دست دادن الکترون است.

علامت قراردادی الکترون خواهی

در فرآیند الکترون خواهی معمولا (ولی نه همیشه) انرژی آزاد می‌شود. اولین الکترون خواهی بیشتر عناصر ، علامت منفی دارد. بعنوان مثال ، الکترون خواهی فلوئور برابر است با 328Kj/mol- = اولین الکترون خواهی و اما برای برخی عناصر مقدار آن مثبت است. مثلا برای نئون عبارت است از 29Kj/mol = اولین الکترون خواهی. علامت مثبت برای الکترون خواهی نشانه آن است که برای تحمیل یک الکترون به اتم مربوط باید کار انجام شود، (یعنی سیستم انرژی جذب کند) تا اتم مورد نظر قادر به جذب الکترون اضافی شود.

علت آزاد شدن انرژی یا جذب انرژی توسط اتم در الکترون خواهی

الکترونی که به اتم خنثی نزدیک می‌شود، از سوی هسته مثبت اتم جذب می‌شود. اما از سوی الکترونهای منفی آن دفع می‌گردد. اگر جاذبه بیش از دافعه باشد، وقتی یون منفی بوجود می‌آید، انرژی آزاد می‌شود. برعکس اگر دافعه بیش از جاذبه باشد، برای تشکیل یون منفی باید به سیستم انرژی داده شود.

تغییرات الکترون خواهی در یک تناوب از جدول تناوبی

قاعدتا یک اتم کوچک باید تمایل بیشتری برای بدست آوردن الکترون از خود نشان دهد تا یک اتم بزرگ، زیرا الکترون افزوده شده به یک اتم کوچک ، بطور متوسط به هسته مثبت نزدیکتر خواهد بود. با توجه به اینکه شعاع اتمی عناصر از یک تناوب از چپ به راست کوچکتر و بار مثبت هسته در همان جهت افزایش می‌یابد، باید انتظار داشت که الکترون خواهی عناصر مربوط ، از چپ به راست در یک تناوب ، مقادیر منفی بیشتری نشان دهد.

موارد استثنایی

مواردی که عناصر از تعمیم بالا تبعیت نمی‌کنند، باید مورد توجه قرار گیرند. مثلا در دوره دوم مقدار الکترون خواهی بریلیوم (دارای پوسته فرعی 2s پر شده) ، نیتروژن (دارای پوسته فرعی 2p نیمه پر شده ) و نئون (با تمام پوسته‌های فرعی پر شده) از قاعده بالا پیروی نمی‌کنند. این عناصر ، آرایش الکترونی نسبتا پایدار دارند و به آسانی الکترون اضافی نمی‌پذیرند.موارد استثنایی همانند را می‌توان در مورد عناصر مشابه به دوره‌های دیگر نیز مشاهده کرد. در هر دوره ، بیشترین تمایل پذیرش الکترون (الکترون خواهی بزرگتر با علامت منفی) در عنصر عضو گروه VIIIA دیده می‌شود. آرایش الکترونی همه اینها از آرایش گاز نجیب یک الکترون کم دارد.

تغییرات الکترون خواهی در یک گروه از جدول تناوبی

در این مورد ، برای تمام گروهها ، نمی‌توان الگوی واحد پیدا کرد. در مورد عناصر گروه VIIIA الکترون خواهی فلوئور ظاهراً غیر عادی است.حجم اتم فلوئور از بقیه عناصر گروه کوچکتر است و می‌توان انتظار داشت که بر اثر جذب الکترون ، بیشترین انرژی را آزاد کند. اما در حالی‌که الکترون افزوده شده به اتم کوچک بشدت توسط هسته ، جذب می‌شود. به همان ترتیب نیز از سوی بقیه الکترونهای موجود در اتم بشدت دفع می‌شود.زیرا هرچه حجم کوچکتر باشد، چگالی بار الکترونهای والانس نیز بیشتر خواهد بود. اعتقاد بر این است که در اتم فلوئور این اثر دافعه اثر جاذبه قوی ناشی از کوچکی اتم را تا حدی خنثی می‌کند.

دومین الکترون خواهی

این فرآیند ، فرآیندی است که در آن یک الکترون به یک یون منفی افزوده می‌شود. برای نمونه در مورد اکسیژن برابر است با 845Kj/mol+ =دومین الکترون خواهی. از آنجا که یک یون منفی و یک الکترون یکدیگر را دفع می‌کنند، در فرآیند افزودن یک الکترون به یک یون منفی نه‌تنها انرژی آزاد نمی‌شود بلکه انجام فرآیند انرژی گیر است و دومین الکترون خواهی تمامی عناصر ، مقدار مثبت دارد.

انرژی تبادل شده در فرآیند تولید یون

انرژی تبادل شده در فرآیند تولید یونی که دو یا چند بار منفی دارد، حاصل جمع جبری تمام الکترون خواهی مربوط است. این حاصل جمع برای تمام یونهای دارای چند بار منفی همیشه مثبت و فرآیند انرژی گیر است.

مقدار انرژی که در فرایند افزایش یک الکترون به یک اتم منفرد گازی شکل در حالت اصلی مبادله می شود، الکترون گیری آن اتم نامیده می شود. در این فرایند، معمولا، انرژی آزاد می شود و بنابراین، الکترون گیری بیشتر عناصر دارای علامت منفی است. ولی الکترون گیری را اغلب به صورت انرژی آزاد شده تعریف می کنند ؛ در منابع علمی که از چنین تعریفی استفاده شده است، مقادیر الکترون گیری که مربوط به آزاد شدن انرژی است، با علامت ثبت نشان داده می شود. تعیین مستقیم الکترون گیری دشوار است و تنها برای معدودی از عناصر انجام شده است. الکترون گیری برخی از عناصر دیگر به طور غیر مستقیم از داده های ترمودینامیکی محاسبه شده اند. بنابراین ، مقادیر الکترون گیری فقط برای معدودی از عناصر در دست است و اغلب این مقادیر دقت زیادی ندارند. تمایل یک اتم کوچک برای پذیرش الکترون بایستی بیشتر از یک اتم بزرگ باشد زیرا در یک اتم کوچک، الکترون افزوده شده، به طور متوسط، به هسته مثبت نزدیک تر است. این گرایش در هر دوره از چپ به راست ، تقریبا پیروی می شود. ولی در دوره دوم ، موارد استثنائی درباره بریلیم (با لایه فرعی2s پر شده)، نیتروژن( با پوسته فرعی 2p نیمه پر) و نئون (با مام لایه های فرعی پر شده) مشاهده می شوند. چنین مواردی برای عناصر نظیر آنها در دوره سوم نیز وجود دارد. عناصری که آرایش الکترونی آنها نسبتا پایدار است، الکترونهای اضافی را به سهولت نمی پذیرند. چون آرایش الکترونی هر یک از عناصر گروه هالوژنها یک الکترون کمتر از آرایش الکترونی گاز نجیب بعدی دارد، هر یک از عناصر این گروه در دوره خود، بیشترین تمایل را برای به دست آوردن یک الکترون را داراست. مقادیر الکترون خواهی هالوژنها، روند کلی الکترون خواهی را در یک گروه نشان می دهد. توانایی جذب الکترون در عناصر گروه هالوژنها، به استثنای فلوئور، از پایین به بالا با کوچک شدن اندازه اتمی افزایش می یابد. ولی تأثیر کوچک شدن اندازه اتم، ممکن



خرید و دانلود تحقیق درمورد- ارتباط الکترون خواهی با انرژی یونش


تحقیق درباره. ارتباط الکترون خواهی با انرژی یونش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

ارتباط الکترون خواهی با انرژی یونش

الکترون خواهی یا آفینیته مربوط به فرآیندی است که در آن ، از اتم خنثی یک یون منفی (از طریق بدست آوردن الکترون) بوجود می‌آید. در حالیکه انرژی یونش مربوط به فرآیند تولید یک یون مثبت از اتم خنثی بسبب از دست دادن الکترون است.

علامت قراردادی الکترون خواهی

در فرآیند الکترون خواهی معمولا (ولی نه همیشه) انرژی آزاد می‌شود. اولین الکترون خواهی بیشتر عناصر ، علامت منفی دارد. بعنوان مثال ، الکترون خواهی فلوئور برابر است با 328Kj/mol- = اولین الکترون خواهی و اما برای برخی عناصر مقدار آن مثبت است. مثلا برای نئون عبارت است از 29Kj/mol = اولین الکترون خواهی. علامت مثبت برای الکترون خواهی نشانه آن است که برای تحمیل یک الکترون به اتم مربوط باید کار انجام شود، (یعنی سیستم انرژی جذب کند) تا اتم مورد نظر قادر به جذب الکترون اضافی شود.

علت آزاد شدن انرژی یا جذب انرژی توسط اتم در الکترون خواهی

الکترونی که به اتم خنثی نزدیک می‌شود، از سوی هسته مثبت اتم جذب می‌شود. اما از سوی الکترونهای منفی آن دفع می‌گردد. اگر جاذبه بیش از دافعه باشد، وقتی یون منفی بوجود می‌آید، انرژی آزاد می‌شود. برعکس اگر دافعه بیش از جاذبه باشد، برای تشکیل یون منفی باید به سیستم انرژی داده شود.

تغییرات الکترون خواهی در یک تناوب از جدول تناوبی

قاعدتا یک اتم کوچک باید تمایل بیشتری برای بدست آوردن الکترون از خود نشان دهد تا یک اتم بزرگ، زیرا الکترون افزوده شده به یک اتم کوچک ، بطور متوسط به هسته مثبت نزدیکتر خواهد بود. با توجه به اینکه شعاع اتمی عناصر از یک تناوب از چپ به راست کوچکتر و بار مثبت هسته در همان جهت افزایش می‌یابد، باید انتظار داشت که الکترون خواهی عناصر مربوط ، از چپ به راست در یک تناوب ، مقادیر منفی بیشتری نشان دهد.

موارد استثنایی

مواردی که عناصر از تعمیم بالا تبعیت نمی‌کنند، باید مورد توجه قرار گیرند. مثلا در دوره دوم مقدار الکترون خواهی بریلیوم (دارای پوسته فرعی 2s پر شده) ، نیتروژن (دارای پوسته فرعی 2p نیمه پر شده ) و نئون (با تمام پوسته‌های فرعی پر شده) از قاعده بالا پیروی نمی‌کنند. این عناصر ، آرایش الکترونی نسبتا پایدار دارند و به آسانی الکترون اضافی نمی‌پذیرند.موارد استثنایی همانند را می‌توان در مورد عناصر مشابه به دوره‌های دیگر نیز مشاهده کرد. در هر دوره ، بیشترین تمایل پذیرش الکترون (الکترون خواهی بزرگتر با علامت منفی) در عنصر عضو گروه VIIIA دیده می‌شود. آرایش الکترونی همه اینها از آرایش گاز نجیب یک الکترون کم دارد.

تغییرات الکترون خواهی در یک گروه از جدول تناوبی

در این مورد ، برای تمام گروهها ، نمی‌توان الگوی واحد پیدا کرد. در مورد عناصر گروه VIIIA الکترون خواهی فلوئور ظاهراً غیر عادی است.حجم اتم فلوئور از بقیه عناصر گروه کوچکتر است و می‌توان انتظار داشت که بر اثر جذب الکترون ، بیشترین انرژی را آزاد کند. اما در حالی‌که الکترون افزوده شده به اتم کوچک بشدت توسط هسته ، جذب می‌شود. به همان ترتیب نیز از سوی بقیه الکترونهای موجود در اتم بشدت دفع می‌شود.زیرا هرچه حجم کوچکتر باشد، چگالی بار الکترونهای والانس نیز بیشتر خواهد بود. اعتقاد بر این است که در اتم فلوئور این اثر دافعه اثر جاذبه قوی ناشی از کوچکی اتم را تا حدی خنثی می‌کند.

دومین الکترون خواهی

این فرآیند ، فرآیندی است که در آن یک الکترون به یک یون منفی افزوده می‌شود. برای نمونه در مورد اکسیژن برابر است با 845Kj/mol+ =دومین الکترون خواهی. از آنجا که یک یون منفی و یک الکترون یکدیگر را دفع می‌کنند، در فرآیند افزودن یک الکترون به یک یون منفی نه‌تنها انرژی آزاد نمی‌شود بلکه انجام فرآیند انرژی گیر است و دومین الکترون خواهی تمامی عناصر ، مقدار مثبت دارد.

انرژی تبادل شده در فرآیند تولید یون

انرژی تبادل شده در فرآیند تولید یونی که دو یا چند بار منفی دارد، حاصل جمع جبری تمام الکترون خواهی مربوط است. این حاصل جمع برای تمام یونهای دارای چند بار منفی همیشه مثبت و فرآیند انرژی گیر است.

مقدار انرژی که در فرایند افزایش یک الکترون به یک اتم منفرد گازی شکل در حالت اصلی مبادله می شود، الکترون گیری آن اتم نامیده می شود. در این فرایند، معمولا، انرژی آزاد می شود و بنابراین، الکترون گیری بیشتر عناصر دارای علامت منفی است. ولی الکترون گیری را اغلب به صورت انرژی آزاد شده تعریف می کنند ؛ در منابع علمی که از چنین تعریفی استفاده شده است، مقادیر الکترون گیری که مربوط به آزاد شدن انرژی است، با علامت ثبت نشان داده می شود. تعیین مستقیم الکترون گیری دشوار است و تنها برای معدودی از عناصر انجام شده است. الکترون گیری برخی از عناصر دیگر به طور غیر مستقیم از داده های ترمودینامیکی محاسبه شده اند. بنابراین ، مقادیر الکترون گیری فقط برای معدودی از عناصر در دست است و اغلب این مقادیر دقت زیادی ندارند. تمایل یک اتم کوچک برای پذیرش الکترون بایستی بیشتر از یک اتم بزرگ باشد زیرا در یک اتم کوچک، الکترون افزوده شده، به طور متوسط، به هسته مثبت نزدیک تر است. این گرایش در هر دوره از چپ به راست ، تقریبا پیروی می شود. ولی در دوره دوم ، موارد استثنائی درباره بریلیم (با لایه فرعی2s پر شده)، نیتروژن( با پوسته فرعی 2p نیمه پر) و نئون (با مام لایه های فرعی پر شده) مشاهده می شوند. چنین مواردی برای عناصر نظیر آنها در دوره سوم نیز وجود دارد. عناصری که آرایش الکترونی آنها نسبتا پایدار است، الکترونهای اضافی را به سهولت نمی پذیرند. چون آرایش الکترونی هر یک از عناصر گروه هالوژنها یک الکترون کمتر از آرایش الکترونی گاز نجیب بعدی دارد، هر یک از عناصر این گروه در دوره خود، بیشترین تمایل را برای به دست آوردن یک الکترون را داراست. مقادیر الکترون خواهی هالوژنها، روند کلی الکترون خواهی را در یک گروه نشان می دهد. توانایی جذب الکترون در عناصر گروه هالوژنها، به استثنای فلوئور، از پایین به بالا با کوچک شدن اندازه اتمی افزایش می یابد. ولی تأثیر کوچک شدن اندازه اتم، ممکن



خرید و دانلود تحقیق درباره. ارتباط الکترون خواهی با انرژی یونش


منابع انرژی تجدید پذیر 10 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

منابع انرژی تجدید پذیر

انرژی زمین گرمایی با توجه به ظرفیت سنجی‌های صورت گرفته در ایران یکی از مناسب‌ترین انرژیهای تجدیدپذیر قابل جایگزینی برای سوختهای فسیلی در کشور است.

انرژی زمین گرمایی با توجه به ظرفیت سنجی‌های صورت گرفته در ایران یکی از مناسب‌ترین انرژیهای تجدیدپذیر قابل جایگزینی برای سوختهای فسیلی در کشور است.

براساس مطالعات دفتر انرژی زمین گرمایی سازمان انرژیهای نو ایران منطقه مشکین شهر بهترین نقطه برای استفاده از ظرفیت انرژی زمین گرمایی در کشور است به طوری که مهمترین هدف این دفتر، ساخت و راه‌اندازی نیروگاه زمین گرمایی به ظرفیت اسمی ‪۱۰۰‬مگاوات در این منطقه است.

بررسی مطالعات موجود و برنامه‌ریزی برای نصب و راه‌اندازی نیروگاه زمین گرمایی مشکین شهر از سوی گروه نیروگاهی دفتر انرژی زمین گرمایی از سال ‪۷۴‬ آغاز شد.

فعالیت های اجرایی این طرح در قالب فاز اکتشافی شامل مطالعات ژئوفیزیک، ژئوشیمی و زمین شناسی با همکاری مهندسان مشاور نیوزلندی(‪KML)‬با هدف احداث نخستین نیروگاه زمین گرمایی در ایران از سال ‪۷۷‬شروع و با تعیین نقاط حفاریهای اکتشافی مطالعه در فاز اکتشافی در سال ‪۷۸‬به پایان رسید.

عملیات حفاری نخستین چاههای اکتشافی زمین گرمایی این طرح از سوی پیمانکار حفاری(شرکت حفاری ایران)و با نظارت کارشناسان شرکت نیوزلندی ‪SKM‬ صورت گرفت.

بر اساس مطالعات گروه نیروگاهی دفتر انرژی زمین گرمایی، نخستین چاه اکتشافی زمین گرمایی مشکین شهر به صورت عمودی با عمق سه هزار و ‪۲۰۰‬متر و دمایی بالغ بر ‪۲۵۰‬درجه سانتیگراد حفر شده است.

چاه اکتشافی دوم به صورت انحرافی به عمق سه هزار و ‪۱۷۷‬متر حفر شد که دمای انتهای چاه ‪۱۴۰‬درجه سانتیگراد است و پس از آن چاه اکتشافی سوم به صورت انحرافی و به عمق دو هزار و ‪۲۶۵‬متر و با دمای ‪۲۱۱‬درجه سانتیگراد حفاری شد.

پس از پایان حفاری چاه های اکتشافی هم‌اکنون تجیهزات فلزی آزمایش چاه بر روی چاه اکتشافی اول نصب شده است و دفتر انرژی زمین گرمایی همراه با مشاور نیوزلندی در حال بهره‌برداری از این چاه و نتایج به دست آمده در حال بررسی است.

توسعه کاربرد منابع انرژی زمین گرمایی به صورت غیرنیروگاهی در مناطق مستعد ایران نیز از اولویتهای راهبردی گروه غیر نیروگاهی این دفتر در استفاده بیش از پیش از نیروی خفته در بطن زمین است.

فعالیت این گروه بر طراحی و برنامه‌ریزی انواع کاربردهای مستقیم از جریان سیال زمین گرمایی متمرکز است به طوری که گلخانه‌های زمین گرمایی، استخر شنا، ذوب برف در معابر، حوضچه‌های پرورش ماهی، گرمایش فضا و مصارف صنعتی از انواع این کاربردها هستند.

یکی از مهمترین اهداف این گروه اجرای پروژه‌های نمونه در نقاط مختلف برای بررسی اثرات اولیه اجرای چنین طرحهایی در کشور است.

همچنین اجرای پروژه پمپ حرارتی در شهر تبریز که فازهای اولیه آن نصب شده و به پایان رسیده و دوره آزمایشات مربوطه در حال انجام است از دیگر برنامه‌های در دست اجرای گروه غیر نیروگاهی دفتر انرژی زمین گرمایی است.

گروه اکتشاف و ظرفیت سنجی دفتر انرژی زمین گرمایی نیز فعالیتهای مشتمل بر ظرفیت سنجی و تحلیل کاربردی مطالعات انجام شده در مناطق مختلف ایران و انجام فاز تکمیلی اکتشافات ژئوفیزیک، ژئوشیمی و زمین شناسی مناطقی از ایران که دارای ظرفیت مناسب هستند را برعهده دارد.

این گروه در مشکین‌شهر بررسی و مطالعه نتایج حاصل از حفر چاههای اکتشافی منطقه سبلان برای دستیابی به ظرفیت مخزن بازبینی در دست اجرا دارند.

توجه روزافزون متولیان امر انرژی به ضرورت بهره‌برداری از منابع انرژی های نو و احداث نیروگاه زمین گرمایی مشکین شهر گامهای اساسی در توسعه منابع زمین گرمایی در کشور است.

اجرای پروژه‌های نمونه برای استفاده غیر نیروگاهی و ایجاد دانش فنی لازم برای اجرای طرحهای فناوری و جایگزینی این انرژی پاک، چشم‌انداز فردایی بدون آلاینده‌های زیست محیطی در بخش تولید انرژی را ترسیم می‌کند.

انرژی های تجدید پذیر

امروزه با توجه به افزایش بهای سوخت های فسیلی و عوامل زیان آور زیست محیطی در استفاده از انرژی های فسیلی استفاده از منابع انرژی تجدید پذیر نظیر انرژی بادی، انرژی آبی، انرژی زمین گرمایی و انرژی خورشیدی از بخش های اساسی سیاست انرژی متعهدانه برای آینده است. در این راستا انرژی خورشیدی یکی از منابع تامین انرژی بدون اثرات مخرب زیست محیطی بشمار می رود که با اعتبار بالایی از دیر باز مورد استفاده بشر قرار گرفته است. ایران به لحاظ موقعیت جغرافیایی و برخورداری مناسب از تابش خورشید از پتانسیل بالایی برای بهره گیری از انرژی خورشید برخوردار است. در این راستا بخش ساختمان و مسکن شرکت بهینه سازی مصرف سوخت در شهرها و روستاهایی که دارای شرایط اقلیمی مناسب برای نصب هستند پروژه استفاده از آبگرمکن خورشیدی خانگی و آبگرمکن خورشیدی عمومی را بعنوان یکی ازاقدامات اساسی در جایگزینی سوخت های فسیلی و توجه به انرژی های تجدید پذیر در دست اقدام دارد.

انرژی‌های تجدید‌پذیر در کانادا

کانادا علاقه‌ای روزافزون به انرژی‌های تجدید‌پذیر نشان می‌دهد و به هر شکل ظرفیت عظیم برق آبی آن سبب شده که کانادا در بالاترین مراتب استفاده‌کنندگان از انرژی‌های تجدید‌پذیر قرار گیرد. «بیل ایگرتسون» از «اتحادیه انرژی‌های نوی کانادا» وضعیت و برنامه‌های توسعه انرژی تجدید‌پذیر در این کشور را بررسی می‌کند.

کانادا علاقه‌ای روزافزون به انرژی‌های تجدید‌پذیر نشان می‌دهد و به هر شکل ظرفیت عظیم برق آبی آن سبب شده که کانادا در بالاترین مراتب استفاده‌کنندگان از انرژی‌های تجدید‌پذیر قرار گیرد. «بیل ایگرتسون» از «اتحادیه انرژی‌های نوی کانادا» وضعیت و برنامه‌های توسعه انرژی تجدید‌پذیر در این کشور را بررسی می‌کند.

کانادا همواره یکی از تولید‌کنندگان پیشتاز انرژی جهان بوده و رشد اقتصادی آن مرهون صادرات عظیم نفت، گاز طبیعی و ذغال‌سنگ و تا حدی زیادی متکی به سدهای بسیار، تاسیسات عمده بیوماس (زیست‌توده) و ظرفیت بالایی ازانرژی هسته‌ای است. در نتیجه کمبود عرضه هیچ‌گاه دغدغه‌ای ملی نبوده است. پس از گذشت بیش از سی سال از شوک‌های نفتی اوپک، مساله مدیریت انرژی، که از دیرباز در قلمرو اختیارات ایالتی و باعث کشاکش با دولت فدرال بوده،‌دوباره مطرح شده است. تاکنون همکاری رسمی بین این دو سطح مدیریت کشور در زمینه انرژی‌های تجدید‌پذیر وجود نداشته که این برخلاف توصیه‌ای است که برای ایجاد آژانس ویژه توسعه این انرژی‌ها شده و بخش صنعت به شکلی قوی از آن حمایت می‌کند. به لحاظ سیاسی، گرایشی به سوی انرژی‌های تجدید‌پذیر، مبتنی بر دگرگونی آب و هوا و نیاز به کاهش انتشار گازهای گلخانه‌ای (GHG) است و به هر صورت مخالفان اشاره می‌کنند که



خرید و دانلود  منابع انرژی تجدید پذیر  10 ص