لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
عنوان مقاله: راهبردهای حل مسأله در ریاضی
مقدمه
مسأله را می توان به زبان ساده تعریف کرد. هر گاه فردی بخواهد کاری انجام دهد ولی نتواند به هدف خود برسد، برایش مسأله ایجاد می شود. به عبارت دیگر هر موقعیت مبهم یک مسأله است. حل مسأله نوعی از یادگیری بسیار پیچیده است. مسأله و تلاش برای حل آن جزئی از زندگی هر فرد است. فرایند برخورد با شرایط زندگی همان مسأله است.
دو دیدگاه متفاوت در آموزش ریاضیات نسبت به حل مسأله وجود دارد:
1. ریاضی یاد بدهیم تا دانش آموزان بتوانند مسأله حل کنند.
2. ریاضی را با حل مسأله آموزش دهیم.
در دیدگاه اول آموزش ریاضی مطابق با محتوای موضوعی است و مفاهیم متفاوتی تدریس می شوند. انتظار داریم دانش آموزان با استفاده از دانش ریاضی خود مسائل متفاوت را حل کنند. اما در دیدگاه دوم آموزش ریاضیات از طریق حل مسأله اتفاق می افتد. یعنی دانش آموز مسأله حل می کند و در ضمن آن محتوا و مفاهیم جدید ریاضی را می سازد، کشف می کند و یا یاد می گیرد . در حال حاضر ، دیدگاه دوم در آموزش ریاضیات بیش تر مطرح است. در این نگاه حل مسأله نقطه ی تمرکز یا قلب تپنده ی آموزش ریاضیات است.
مهارت حل مسأله
اگر از معلمان ریاضی سؤال شود که مشکل اصلی دانش آموزان در درس ریاضی چیست؟ به یقین خواهند گفت: آنها در حل مسأله ناتوان هستند.
درمطالعه ی تیمز نیز همین موضوع را شاهد بودیم. چون در اغلب مسأله های آزمون کتبی این مطالعه عملکرد دانش آموزان پایین است. در واقع می توانیم بگوییم دانش آموزان توانایی یا مهارت حل مسأله را ندارند.
یکی از دلایل این ناتوانی ، فقدان طراحی برای آموزش مهارت حل مسأله به دانش آموزان بوده است. یا به عبارتی معلمان به آنها یاد نداده اند که چگونه مسأله را حل کنند. هر گاه دانش آموزان با مسأله ای روبروه شده و از حل آن عاجز مانده اند معلمان تنها به بیان راه حل یا پاسخ مسأله اکتفا کرده اند و نگاه های پرسش گر، کنجکاو ومتحیر دانش آموزان با این سؤال باقی مانده است: معلم ما چگونه توانست مسأله را حل کند؟ راه حل مسأله چگونه به فکر او رسید؟ چرا ما نتوانستیم راه حل مسأله را کشف کنیم؟
در خیلی از مواقع معلمانی که سعی کرده اند به طریقی حل مسأله را به دانش آموزان خود یاد دهند، راه را اشتباه رفته اند و آموزش های نادرست داده اند. برای مثال به دانش آموزان گفته اند: عددهای مسأله بسیار مهم اند. زیر آن ها خط بکشید. فراموش نکنید که باید از آن ها استفاده کنید. همین آموزش نادرست باعث شده است. دانش آموزان اطلاعات مسأله را به خوبی تشخیص ندهند. وقتی مسأله زیربرای دانش آموزان کلاس سوم مطرح شد، آن عدد 747 را در عملیات مسأله دخالت دادند و با آن عدد عبارت های جمع و تفریق و ... نوشتند:
« یک هواپیمای بوئینگ 747 با 237 مسافر در فرودگاه نشست و 130 مسافر را پیاده کرد. حالا این هواپیما چند مسافر دارد؟
یا برای دانش آموزان گفته اند که درمسأله بعضی از کلمه ها بسیار مهم است. برای مثال اگر کلمه روی هم را دیدید مسئله مربوط به جمع است و اگر کلمه ی اختلاف را دیدید حتماً باید تفریق کنید.
به همین دلیل در مسأله زیر که در مطالعه ی تیمز (2003) آمده بود، عده ای از از دانش آموزان کلاس چهارم شرکت کننده. در این مطالعه به اشتباه افتادند و مسأله را به جای ضرب، جمع کردند.
«در یک سالن سینما 15 ردیف صندلی وجود دارد. در هر ردیف 19 صندلی قرار دارد . این سالن روی هم چند صندلی دارد؟ »
بهتر است این روش های آموزش نادرست را به کار نبریم و به دنبال طرحی برای آموزش حل مسأله به دانش آموزان باشیم.
آموزش حل مسأله
آیا حل مسأله آموزش دادنی است؟ یکی از دلایل فقدان طرحی برای آموزش حل مسأله به دانش آموزان ، این است که آموزشگران ریاضی تا چندین سال پیش معتقد بودند که حل مسأله آموزش دادنی نیست بلکه یک هنر یا ویژگی و توانایی است که بعضی از انسانها دارند و بعضی ندارند. بنابراین هیچ کس تلاش برای حل مسأله به دانش آموزان نمی کرد. اما تعداد کسانی که درمورد آموزش حل مسأله تحقیق می کنند بیش تر است.
یکی از افرادی که در مورد چگونگی حل مسأله و آموزش آن تحقیق کرد جرج پولیا است. حاصل کار او در کتاب «چگونه مسأله حل کنیم» منتشر شد. مرحوم احمد آرام این کتاب را ترجمه کرده است. او در مقدمه ی کتاب خود می گوید: « من یک ریاضیدان هستم. متخصص آموزش ریاضی نیستم، اما علاقمندم بدانم چرا من می توانم مسأله ریاضی را حل کنم و دیگران نمی توانند؟ چرا بعضی از دانشجویان مسأله ریاضی را حل می کنند ولی بعضی نمی توانند؟ او همین سؤال ها را دنبال کرد و مدلی برای تفکر حل مسأله و آموزش راهبردها ارائه کرد. پولیا دو حرف اساسی دارد. 1- مدل چهار مرحله ای برای تفکر حل مسأله 2- آموزش راهبردها که البته نکته دوم در آموزش اهمیت بیشتری دارد.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 98
فصل اول
مقدمه ای بر شبکه های عصبی
1-1 مقدمه
در سالیان اخیر شاهد حرکتی مستمر، از تحقیقات صرفاً تئوری به تحقیقات کاربردی بخصوص در زمینه پردازش اطلاعات، برای مسائلی که برای آن ها راه حلی موجودنیست ویا براحتی قابل حل نیستند بوده ایم. با عنایت به این امر، علاقه فزاینده ای در توسعه تئوریک سیستمهای دنیا میکی هوشمند مدل آزاد ـ که مبتنی بر داده های تجربی هستند ـ ایجاد شده است. شبکه های عصبی مصنوعی جزء این دسته از سیستمهای دینامیکی قراردارند، که با پردازش روی داده های تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند. به همین خاطر به این سیستمها هوشمند گویند. چرا که براساس محاسبات روی داده های عددی یا مثال ها ، قوانین کلی را فرامی گیرند. این سیستم ها در مدلسازی ساختار نرو سیناپتیکی مغز بشر می کوشند. پیاده سازی ویژگیهای شگفت انگیز مغز در یک سیستم مصنوعی (سیستم دینامیکی ساخته دست بشر) همیشه وسوسه انگیز و مطلوب بوده است. محققینی که طی سالها در این زمینه فعالیت کرده اند بسیارند، لیکن نتیجه این تلاشها صرف نظر ازیافته های ارزشمند باور هر چه بیشتر این اصل بوده است که مغز بشر دست یافتنی است.
با تاکید بر این نکته که گذشته از متافیزیک، دور از دسترس بودن ایده آل «هوش طبیعی» را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت، باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود خود سبب انگیزش پژوهشهای بیشتر و بیشتر در این زمینه بوده و خواهند بود، همچنان که امروزه شاهد بروز چنین فعالیتهایی در قالب شبکه های عصبی مصنوعی هستیم، اغلب آن هایی که با چنین سیستم هایی آشنایی دارند، به اغراق آمیز بودن نام آنها معترفند، اگرچه این اغراق بیانگر مطلوبیت و نیز بعضی شباهتهای این گونه سیستم ها با سیستم های طبیعی است ولی می تواند تا حدی بین آن چه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آن چه که از نامشان بر می آید تناقض ایجاد نماید.
1-2 تاریخچه شبکه های عصبی
بعضی از پیش زمینه های شبکه های عصبی را می توان به اوایل قرن بیستم و اواخر قرن نوزدهم برگرداند. در این دوره کارهای اساسی در فیزیک ، روانشناسی و نروفیزیولوژی توسط علمایی چون هرمان فون هلمهلتز، ارنست ماخو ایوان پاولف صورت پذیرفت. این کارهای اولیه عموماً بر تئوریهای کلی یادگیری ، بینایی و شرطی تاکید داشته اند و اصلاً به مدلهای مشخص ریاضی عملکرد نرونها اشاره ای نداشته اند.
دیدگاه جدید شبکه های عصبی در دهه 40 قرن بیستم آغاز شد زمانی که وارن مک کلوث و والترپیتز نشان دادند که شبکه های عصبی می توانند هر تابع حسابی و منطقی را محاسبه نمایند. کار این افراد را می توان نقطه شروع حوزه علمی شبکه های عصبی مصنوعی نامید و این موضوع با دونالدهب ادامه یافت، شخصی که عمل شرط گذاری کلاسیک را که توسط پاولف مطرح شده بود به عنوان خواص نرونها معرفی نمود و سپس مکانیسمی را جهت یادگیری نرونها بیولوژیکی ارائه داد. نخستین کاربرد شبکه های عصبی در اواخر دهه50 قرن بیستم مطرح شد زمانی که فرانک روز نبلات در سال 1958 شبکه پرسپترون را معرفی نمود. روز نبلات و همکارانش شبکه ای ساختند که قادر بود الگوها را از هم شناسایی نماید. در همین زمان بود که برنارد ویدرو در سال 1960 شبکه عصبی تطبیقی خطی آدلاین را با قانون یادگیری جدید مطرح نمود که از لحاظ ساختار، شبیه شبکه پرسپترون بود. پیشرفت شبکه های عصبی تا دهه 70 قرن بیستم ادامه یافت. در سال 1972 تئوکوهونن، جیمز اندرسون، بطور مستقل و بدون اطلاع از هم، شبکه های عصبی جدیدی را معرفی نمودند که قادر بودند به عنوان عناصر ذخیره ساز عمل نمایند. استفان گروسبرگ در این دهه روی شبکه های خود سازمانده فعالیت می کرد. فعالیت در زمینه شبکه های عصبی در دهه 60 قرن بیستم در قیاس با دهه 80 به علت عدم بروز ایده های جدید و نبود کامپیوترهای سریع ـ جهت پیاده سازی ـ کمرنگ می نمود. لکن در خلال دهه 80، رشد تکنولوژی میکروپروسسورها روند صعودی داشت و تحقیقات روی شبکه های عصبی فزونی یافت و ایده های بسیار جدیدی مطرح شدند. ایده های نووتکنولوژی بالا برای رونسانس دوباره در شبکه های عصبی کافی به نظر می رسید. در این زایش دوباره شبکه های عصبی و جدید قابل تامل می باشد. استفاده از مکانیسم تصادفی جهت توضیح عملکرد یک طبقه وسیع از شبکه های برگشتی است که می توان آن ها را جهت ذخیره سازی اطلاعات استفاده نمود. این ایده توسط جان هاپفلید، فیزیکدان آمریکایی در سال 1982 مطرح شد. دومین ایده مهم که کلید توسعه شبکه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 98
فصل اول
مقدمه ای بر شبکه های عصبی
1-1 مقدمه
در سالیان اخیر شاهد حرکتی مستمر، از تحقیقات صرفاً تئوری به تحقیقات کاربردی بخصوص در زمینه پردازش اطلاعات، برای مسائلی که برای آن ها راه حلی موجودنیست ویا براحتی قابل حل نیستند بوده ایم. با عنایت به این امر، علاقه فزاینده ای در توسعه تئوریک سیستمهای دنیا میکی هوشمند مدل آزاد ـ که مبتنی بر داده های تجربی هستند ـ ایجاد شده است. شبکه های عصبی مصنوعی جزء این دسته از سیستمهای دینامیکی قراردارند، که با پردازش روی داده های تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند. به همین خاطر به این سیستمها هوشمند گویند. چرا که براساس محاسبات روی داده های عددی یا مثال ها ، قوانین کلی را فرامی گیرند. این سیستم ها در مدلسازی ساختار نرو سیناپتیکی مغز بشر می کوشند. پیاده سازی ویژگیهای شگفت انگیز مغز در یک سیستم مصنوعی (سیستم دینامیکی ساخته دست بشر) همیشه وسوسه انگیز و مطلوب بوده است. محققینی که طی سالها در این زمینه فعالیت کرده اند بسیارند، لیکن نتیجه این تلاشها صرف نظر ازیافته های ارزشمند باور هر چه بیشتر این اصل بوده است که مغز بشر دست یافتنی است.
با تاکید بر این نکته که گذشته از متافیزیک، دور از دسترس بودن ایده آل «هوش طبیعی» را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت، باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود خود سبب انگیزش پژوهشهای بیشتر و بیشتر در این زمینه بوده و خواهند بود، همچنان که امروزه شاهد بروز چنین فعالیتهایی در قالب شبکه های عصبی مصنوعی هستیم، اغلب آن هایی که با چنین سیستم هایی آشنایی دارند، به اغراق آمیز بودن نام آنها معترفند، اگرچه این اغراق بیانگر مطلوبیت و نیز بعضی شباهتهای این گونه سیستم ها با سیستم های طبیعی است ولی می تواند تا حدی بین آن چه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آن چه که از نامشان بر می آید تناقض ایجاد نماید.
1-2 تاریخچه شبکه های عصبی
بعضی از پیش زمینه های شبکه های عصبی را می توان به اوایل قرن بیستم و اواخر قرن نوزدهم برگرداند. در این دوره کارهای اساسی در فیزیک ، روانشناسی و نروفیزیولوژی توسط علمایی چون هرمان فون هلمهلتز، ارنست ماخو ایوان پاولف صورت پذیرفت. این کارهای اولیه عموماً بر تئوریهای کلی یادگیری ، بینایی و شرطی تاکید داشته اند و اصلاً به مدلهای مشخص ریاضی عملکرد نرونها اشاره ای نداشته اند.
دیدگاه جدید شبکه های عصبی در دهه 40 قرن بیستم آغاز شد زمانی که وارن مک کلوث و والترپیتز نشان دادند که شبکه های عصبی می توانند هر تابع حسابی و منطقی را محاسبه نمایند. کار این افراد را می توان نقطه شروع حوزه علمی شبکه های عصبی مصنوعی نامید و این موضوع با دونالدهب ادامه یافت، شخصی که عمل شرط گذاری کلاسیک را که توسط پاولف مطرح شده بود به عنوان خواص نرونها معرفی نمود و سپس مکانیسمی را جهت یادگیری نرونها بیولوژیکی ارائه داد. نخستین کاربرد شبکه های عصبی در اواخر دهه50 قرن بیستم مطرح شد زمانی که فرانک روز نبلات در سال 1958 شبکه پرسپترون را معرفی نمود. روز نبلات و همکارانش شبکه ای ساختند که قادر بود الگوها را از هم شناسایی نماید. در همین زمان بود که برنارد ویدرو در سال 1960 شبکه عصبی تطبیقی خطی آدلاین را با قانون یادگیری جدید مطرح نمود که از لحاظ ساختار، شبیه شبکه پرسپترون بود. پیشرفت شبکه های عصبی تا دهه 70 قرن بیستم ادامه یافت. در سال 1972 تئوکوهونن، جیمز اندرسون، بطور مستقل و بدون اطلاع از هم، شبکه های عصبی جدیدی را معرفی نمودند که قادر بودند به عنوان عناصر ذخیره ساز عمل نمایند. استفان گروسبرگ در این دهه روی شبکه های خود سازمانده فعالیت می کرد. فعالیت در زمینه شبکه های عصبی در دهه 60 قرن بیستم در قیاس با دهه 80 به علت عدم بروز ایده های جدید و نبود کامپیوترهای سریع ـ جهت پیاده سازی ـ کمرنگ می نمود. لکن در خلال دهه 80، رشد تکنولوژی میکروپروسسورها روند صعودی داشت و تحقیقات روی شبکه های عصبی فزونی یافت و ایده های بسیار جدیدی مطرح شدند. ایده های نووتکنولوژی بالا برای رونسانس دوباره در شبکه های عصبی کافی به نظر می رسید. در این زایش دوباره شبکه های عصبی و جدید قابل تامل می باشد. استفاده از مکانیسم تصادفی جهت توضیح عملکرد یک طبقه وسیع از شبکه های برگشتی است که می توان آن ها را جهت ذخیره سازی اطلاعات استفاده نمود. این ایده توسط جان هاپفلید، فیزیکدان آمریکایی در سال 1982 مطرح شد. دومین ایده مهم که کلید توسعه شبکه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 98
فصل اول
مقدمه ای بر شبکه های عصبی
1-1 مقدمه
در سالیان اخیر شاهد حرکتی مستمر، از تحقیقات صرفاً تئوری به تحقیقات کاربردی بخصوص در زمینه پردازش اطلاعات، برای مسائلی که برای آن ها راه حلی موجودنیست ویا براحتی قابل حل نیستند بوده ایم. با عنایت به این امر، علاقه فزاینده ای در توسعه تئوریک سیستمهای دنیا میکی هوشمند مدل آزاد ـ که مبتنی بر داده های تجربی هستند ـ ایجاد شده است. شبکه های عصبی مصنوعی جزء این دسته از سیستمهای دینامیکی قراردارند، که با پردازش روی داده های تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند. به همین خاطر به این سیستمها هوشمند گویند. چرا که براساس محاسبات روی داده های عددی یا مثال ها ، قوانین کلی را فرامی گیرند. این سیستم ها در مدلسازی ساختار نرو سیناپتیکی مغز بشر می کوشند. پیاده سازی ویژگیهای شگفت انگیز مغز در یک سیستم مصنوعی (سیستم دینامیکی ساخته دست بشر) همیشه وسوسه انگیز و مطلوب بوده است. محققینی که طی سالها در این زمینه فعالیت کرده اند بسیارند، لیکن نتیجه این تلاشها صرف نظر ازیافته های ارزشمند باور هر چه بیشتر این اصل بوده است که مغز بشر دست یافتنی است.
با تاکید بر این نکته که گذشته از متافیزیک، دور از دسترس بودن ایده آل «هوش طبیعی» را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت، باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود خود سبب انگیزش پژوهشهای بیشتر و بیشتر در این زمینه بوده و خواهند بود، همچنان که امروزه شاهد بروز چنین فعالیتهایی در قالب شبکه های عصبی مصنوعی هستیم، اغلب آن هایی که با چنین سیستم هایی آشنایی دارند، به اغراق آمیز بودن نام آنها معترفند، اگرچه این اغراق بیانگر مطلوبیت و نیز بعضی شباهتهای این گونه سیستم ها با سیستم های طبیعی است ولی می تواند تا حدی بین آن چه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آن چه که از نامشان بر می آید تناقض ایجاد نماید.
1-2 تاریخچه شبکه های عصبی
بعضی از پیش زمینه های شبکه های عصبی را می توان به اوایل قرن بیستم و اواخر قرن نوزدهم برگرداند. در این دوره کارهای اساسی در فیزیک ، روانشناسی و نروفیزیولوژی توسط علمایی چون هرمان فون هلمهلتز، ارنست ماخو ایوان پاولف صورت پذیرفت. این کارهای اولیه عموماً بر تئوریهای کلی یادگیری ، بینایی و شرطی تاکید داشته اند و اصلاً به مدلهای مشخص ریاضی عملکرد نرونها اشاره ای نداشته اند.
دیدگاه جدید شبکه های عصبی در دهه 40 قرن بیستم آغاز شد زمانی که وارن مک کلوث و والترپیتز نشان دادند که شبکه های عصبی می توانند هر تابع حسابی و منطقی را محاسبه نمایند. کار این افراد را می توان نقطه شروع حوزه علمی شبکه های عصبی مصنوعی نامید و این موضوع با دونالدهب ادامه یافت، شخصی که عمل شرط گذاری کلاسیک را که توسط پاولف مطرح شده بود به عنوان خواص نرونها معرفی نمود و سپس مکانیسمی را جهت یادگیری نرونها بیولوژیکی ارائه داد. نخستین کاربرد شبکه های عصبی در اواخر دهه50 قرن بیستم مطرح شد زمانی که فرانک روز نبلات در سال 1958 شبکه پرسپترون را معرفی نمود. روز نبلات و همکارانش شبکه ای ساختند که قادر بود الگوها را از هم شناسایی نماید. در همین زمان بود که برنارد ویدرو در سال 1960 شبکه عصبی تطبیقی خطی آدلاین را با قانون یادگیری جدید مطرح نمود که از لحاظ ساختار، شبیه شبکه پرسپترون بود. پیشرفت شبکه های عصبی تا دهه 70 قرن بیستم ادامه یافت. در سال 1972 تئوکوهونن، جیمز اندرسون، بطور مستقل و بدون اطلاع از هم، شبکه های عصبی جدیدی را معرفی نمودند که قادر بودند به عنوان عناصر ذخیره ساز عمل نمایند. استفان گروسبرگ در این دهه روی شبکه های خود سازمانده فعالیت می کرد. فعالیت در زمینه شبکه های عصبی در دهه 60 قرن بیستم در قیاس با دهه 80 به علت عدم بروز ایده های جدید و نبود کامپیوترهای سریع ـ جهت پیاده سازی ـ کمرنگ می نمود. لکن در خلال دهه 80، رشد تکنولوژی میکروپروسسورها روند صعودی داشت و تحقیقات روی شبکه های عصبی فزونی یافت و ایده های بسیار جدیدی مطرح شدند. ایده های نووتکنولوژی بالا برای رونسانس دوباره در شبکه های عصبی کافی به نظر می رسید. در این زایش دوباره شبکه های عصبی و جدید قابل تامل می باشد. استفاده از مکانیسم تصادفی جهت توضیح عملکرد یک طبقه وسیع از شبکه های برگشتی است که می توان آن ها را جهت ذخیره سازی اطلاعات استفاده نمود. این ایده توسط جان هاپفلید، فیزیکدان آمریکایی در سال 1982 مطرح شد. دومین ایده مهم که کلید توسعه شبکه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 98
فصل اول
مقدمه ای بر شبکه های عصبی
1-1 مقدمه
در سالیان اخیر شاهد حرکتی مستمر، از تحقیقات صرفاً تئوری به تحقیقات کاربردی بخصوص در زمینه پردازش اطلاعات، برای مسائلی که برای آن ها راه حلی موجودنیست ویا براحتی قابل حل نیستند بوده ایم. با عنایت به این امر، علاقه فزاینده ای در توسعه تئوریک سیستمهای دنیا میکی هوشمند مدل آزاد ـ که مبتنی بر داده های تجربی هستند ـ ایجاد شده است. شبکه های عصبی مصنوعی جزء این دسته از سیستمهای دینامیکی قراردارند، که با پردازش روی داده های تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند. به همین خاطر به این سیستمها هوشمند گویند. چرا که براساس محاسبات روی داده های عددی یا مثال ها ، قوانین کلی را فرامی گیرند. این سیستم ها در مدلسازی ساختار نرو سیناپتیکی مغز بشر می کوشند. پیاده سازی ویژگیهای شگفت انگیز مغز در یک سیستم مصنوعی (سیستم دینامیکی ساخته دست بشر) همیشه وسوسه انگیز و مطلوب بوده است. محققینی که طی سالها در این زمینه فعالیت کرده اند بسیارند، لیکن نتیجه این تلاشها صرف نظر ازیافته های ارزشمند باور هر چه بیشتر این اصل بوده است که مغز بشر دست یافتنی است.
با تاکید بر این نکته که گذشته از متافیزیک، دور از دسترس بودن ایده آل «هوش طبیعی» را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت، باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود خود سبب انگیزش پژوهشهای بیشتر و بیشتر در این زمینه بوده و خواهند بود، همچنان که امروزه شاهد بروز چنین فعالیتهایی در قالب شبکه های عصبی مصنوعی هستیم، اغلب آن هایی که با چنین سیستم هایی آشنایی دارند، به اغراق آمیز بودن نام آنها معترفند، اگرچه این اغراق بیانگر مطلوبیت و نیز بعضی شباهتهای این گونه سیستم ها با سیستم های طبیعی است ولی می تواند تا حدی بین آن چه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آن چه که از نامشان بر می آید تناقض ایجاد نماید.
1-2 تاریخچه شبکه های عصبی
بعضی از پیش زمینه های شبکه های عصبی را می توان به اوایل قرن بیستم و اواخر قرن نوزدهم برگرداند. در این دوره کارهای اساسی در فیزیک ، روانشناسی و نروفیزیولوژی توسط علمایی چون هرمان فون هلمهلتز، ارنست ماخو ایوان پاولف صورت پذیرفت. این کارهای اولیه عموماً بر تئوریهای کلی یادگیری ، بینایی و شرطی تاکید داشته اند و اصلاً به مدلهای مشخص ریاضی عملکرد نرونها اشاره ای نداشته اند.
دیدگاه جدید شبکه های عصبی در دهه 40 قرن بیستم آغاز شد زمانی که وارن مک کلوث و والترپیتز نشان دادند که شبکه های عصبی می توانند هر تابع حسابی و منطقی را محاسبه نمایند. کار این افراد را می توان نقطه شروع حوزه علمی شبکه های عصبی مصنوعی نامید و این موضوع با دونالدهب ادامه یافت، شخصی که عمل شرط گذاری کلاسیک را که توسط پاولف مطرح شده بود به عنوان خواص نرونها معرفی نمود و سپس مکانیسمی را جهت یادگیری نرونها بیولوژیکی ارائه داد. نخستین کاربرد شبکه های عصبی در اواخر دهه50 قرن بیستم مطرح شد زمانی که فرانک روز نبلات در سال 1958 شبکه پرسپترون را معرفی نمود. روز نبلات و همکارانش شبکه ای ساختند که قادر بود الگوها را از هم شناسایی نماید. در همین زمان بود که برنارد ویدرو در سال 1960 شبکه عصبی تطبیقی خطی آدلاین را با قانون یادگیری جدید مطرح نمود که از لحاظ ساختار، شبیه شبکه پرسپترون بود. پیشرفت شبکه های عصبی تا دهه 70 قرن بیستم ادامه یافت. در سال 1972 تئوکوهونن، جیمز اندرسون، بطور مستقل و بدون اطلاع از هم، شبکه های عصبی جدیدی را معرفی نمودند که قادر بودند به عنوان عناصر ذخیره ساز عمل نمایند. استفان گروسبرگ در این دهه روی شبکه های خود سازمانده فعالیت می کرد. فعالیت در زمینه شبکه های عصبی در دهه 60 قرن بیستم در قیاس با دهه 80 به علت عدم بروز ایده های جدید و نبود کامپیوترهای سریع ـ جهت پیاده سازی ـ کمرنگ می نمود. لکن در خلال دهه 80، رشد تکنولوژی میکروپروسسورها روند صعودی داشت و تحقیقات روی شبکه های عصبی فزونی یافت و ایده های بسیار جدیدی مطرح شدند. ایده های نووتکنولوژی بالا برای رونسانس دوباره در شبکه های عصبی کافی به نظر می رسید. در این زایش دوباره شبکه های عصبی و جدید قابل تامل می باشد. استفاده از مکانیسم تصادفی جهت توضیح عملکرد یک طبقه وسیع از شبکه های برگشتی است که می توان آن ها را جهت ذخیره سازی اطلاعات استفاده نمود. این ایده توسط جان هاپفلید، فیزیکدان آمریکایی در سال 1982 مطرح شد. دومین ایده مهم که کلید توسعه شبکه