واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

مقاله. فرز کاری فارسی و انگلیسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

موضوع :

Milling

Milling is basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple- tooth cutter is used to that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work.

The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece (see Figure 22-4). In some cases the teeth extent part way across one or both ends of the cylinder.

Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well- suited foe mass- production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling machines of a general- purpose nature also have been developed that are widely used in job- shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe machine almost any type of product of suitable size.

Types of milling operation. Milling operations can be classified into two broad categories, each of which has several variations:

In peripheral milling a surface is generated by teeth located in the periphery of the cutter body; the surface is parallel with the axis of rotation of the cutter. Both flat and formed surface can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.

In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter. The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.

The basic concepts of peripheral and face milling are illustrated in Figure 22-1. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal-and vertical- spindle machines

Surface generation in milling. Surfaces can be generated in milling by the two distinctly different methods depicted in Figure 22-2. Note that in up milling the cutter rotates against the direction of feed of the workpiece, whereas in down milling the rotation is in the same direction as the feed. As shown in Figures 22-2 and 22-3, the method of chip formation is quite different in the two cases. In up milling the chip is very thin at the beginning, where the tooth first contacts the work, and increases in thickness, becoming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forces must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.

In down milling, maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. Inasmuch as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much



خرید و دانلود مقاله. فرز کاری فارسی و انگلیسی


تحقیق درباره. فرز کاری فارسی و انگلیسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

موضوع :

Milling

Milling is basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple- tooth cutter is used to that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work.

The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece (see Figure 22-4). In some cases the teeth extent part way across one or both ends of the cylinder.

Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well- suited foe mass- production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling machines of a general- purpose nature also have been developed that are widely used in job- shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe machine almost any type of product of suitable size.

Types of milling operation. Milling operations can be classified into two broad categories, each of which has several variations:

In peripheral milling a surface is generated by teeth located in the periphery of the cutter body; the surface is parallel with the axis of rotation of the cutter. Both flat and formed surface can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.

In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter. The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.

The basic concepts of peripheral and face milling are illustrated in Figure 22-1. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal-and vertical- spindle machines

Surface generation in milling. Surfaces can be generated in milling by the two distinctly different methods depicted in Figure 22-2. Note that in up milling the cutter rotates against the direction of feed of the workpiece, whereas in down milling the rotation is in the same direction as the feed. As shown in Figures 22-2 and 22-3, the method of chip formation is quite different in the two cases. In up milling the chip is very thin at the beginning, where the tooth first contacts the work, and increases in thickness, becoming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forces must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.

In down milling, maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. Inasmuch as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much



خرید و دانلود تحقیق درباره. فرز کاری فارسی و انگلیسی


حکاکی با فرز

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 39 صفحه

 قسمتی از متن .doc : 

 

پیش گفتار

پروژه حکاکی فیزیکی با فرز زمانی به ذهن من رسید که در دانشگاه واحدی به نام حکاکی با فرز داشتم که برای من بسیار شیرین بوده و آن زمان بود که ذهنم برای انجام این پروژه برانگیخته شد.

حکاکی با فرز یکی از زیر شاخه های حکاکی فیزیکی است که آن را زیر نظر استاد عزیزم آقای پرویز قلی زاده آموختم و نیز از راهنمایی استاد بزرگوار آقای فرهاد فلاح استفاده کردم .

سعی من در انجام این پروژه اشنایی هر چه بیشتر خودم با این رشته و نیز جمع آوری مطالبی است که شاید برای سایر عزیزانی که علاقه مند این رشته هستند مفید باشد.

ابتدا سعی من بر این بود که از مطالب و منابع موجود این موضوع استفاده کنیم منابع کمی در این مورد در دسترس است و اکثر دوستانی که در این موارد تحقیق کرده اند از آن منابع استفاده برده اند تصمیم گرفتم که از تجربیات و دانسته های خودم که از استادان عزیزم در طول تحصیل بدست آورده ام این پروژه را تکمیل کنم.

در اینجا لازم می دانم که از کسانی که در جهت ارتقاء من زحمت کشیده اند تا من به این درجه از تحصیل و تجربه برسم کمال تشکر و قدردانی را داشته باشم.

کسانی که برای من بسیار بزرگوار و عزیز هستند و این نوشتار را با تمام وجود تقدیمشان می نمایم. تقدیم به پدر ومادر و همسر عزیزم.

به امید پایداری هر چه بیشتر آنان

چکیده :

مطالبی که در پی می آید در راستای ارائه پروژه نهایی جهت دریافت درجه کاردانی در رشته شیشه تهیه و تنظیم گردیده است.

در این مطالب سعی بر معرفی رشته حکاکی روی شیشه با فرز نموده که شامل سه فصل است :

فصل اول تعاریف و تاریخچه شیشه در ایران و جهان و تاریخچه جزئیات آن و فصل دوم در خصوص انواع حکاکی و تعاریف و ابزار مورد نیاز و در فصل سوم شرح کار عملی و در ادامه نتیجه گیری ارائه گردیده است.

محبوبه عدالت کیش

مقدمه :

به نام آفریننده زیبائی

امروزه با وجود انواع تکنولوژی ونیز مشغله بسیار زیاد مردم زندگی بسیار بی روح شده است. و چیزی که می تواند این یکنواختی را از بین ببرد و انسانها را از اسارت تکنولوژی، نجات دهد تنها هنر است و بس.

با نگاه به طبیعت و توجه به گوشه و کنار آن می توان این مطلب را دریافت که خداوند نیز هنر و زیبایی را دوست دارد و او هنرمندترین هنرمندان است. و بشر نیز با توجه به این مسئله خود کوشیده است تا زیبائی را به مکان زندگی خود بیاورد و خلق آثاری هنرمندانه بوسیله دست، ذهن دیگران را به سمت زیباییها کشانده و چشم آنان را خیره کند. هنرمندانی که هنر و زیبایی را با روح لطیف خود آمیخته و آثاری خلق کرده اند که به نوع خود بی نظیر است.

گرچه من هنرمند نیستم ولی سعی کردم که در این راه زیر دست برخی از هنرمندان کار کنم و مختصر هنری بیاموزم و زندگی خود را با آن آذین بخشم و نیز با نوشتن شرح کارم اطلاعاتی را که آموخته ام را در اختیار علاقه مندان به هنر قرار دهم.



خرید و دانلود  حکاکی با فرز


تحقیق درباره: فرز کاری فارسی و انگلیسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

موضوع :

Milling

Milling is basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple- tooth cutter is used to that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work.

The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece (see Figure 22-4). In some cases the teeth extent part way across one or both ends of the cylinder.

Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well- suited foe mass- production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling machines of a general- purpose nature also have been developed that are widely used in job- shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe machine almost any type of product of suitable size.

Types of milling operation. Milling operations can be classified into two broad categories, each of which has several variations:

In peripheral milling a surface is generated by teeth located in the periphery of the cutter body; the surface is parallel with the axis of rotation of the cutter. Both flat and formed surface can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.

In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter. The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.

The basic concepts of peripheral and face milling are illustrated in Figure 22-1. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal-and vertical- spindle machines

Surface generation in milling. Surfaces can be generated in milling by the two distinctly different methods depicted in Figure 22-2. Note that in up milling the cutter rotates against the direction of feed of the workpiece, whereas in down milling the rotation is in the same direction as the feed. As shown in Figures 22-2 and 22-3, the method of chip formation is quite different in the two cases. In up milling the chip is very thin at the beginning, where the tooth first contacts the work, and increases in thickness, becoming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forces must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.

In down milling, maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. Inasmuch as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much



خرید و دانلود تحقیق درباره: فرز کاری فارسی و انگلیسی


مقاله درباره: فرز کاری فارسی و انگلیسی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 50

 

موضوع :

Milling

Milling is basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple- tooth cutter is used to that the metal removal rate is high, and frequently the desired surface is obtained in a single pass of the work.

The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral teeth that intermittently engage and cut the workpiece (see Figure 22-4). In some cases the teeth extent part way across one or both ends of the cylinder.

Because the milling principle provides rapid metal removal and can produce good surface finish, it is particularly well- suited foe mass- production work, and excellent milling machines have been developed for this purpose. However, very accurate and versatile milling machines of a general- purpose nature also have been developed that are widely used in job- shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe machine almost any type of product of suitable size.

Types of milling operation. Milling operations can be classified into two broad categories, each of which has several variations:

In peripheral milling a surface is generated by teeth located in the periphery of the cutter body; the surface is parallel with the axis of rotation of the cutter. Both flat and formed surface can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.

In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the face of the cutter. The major portion of the cutting is done by the peripheral portions of the teeth with the face portions providing a finishing action.

The basic concepts of peripheral and face milling are illustrated in Figure 22-1. Peripheral milling operations usually are performed on machines having horizontal spindles, whereas face milling is done on both horizontal-and vertical- spindle machines

Surface generation in milling. Surfaces can be generated in milling by the two distinctly different methods depicted in Figure 22-2. Note that in up milling the cutter rotates against the direction of feed of the workpiece, whereas in down milling the rotation is in the same direction as the feed. As shown in Figures 22-2 and 22-3, the method of chip formation is quite different in the two cases. In up milling the chip is very thin at the beginning, where the tooth first contacts the work, and increases in thickness, becoming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forces must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.

In down milling, maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter, all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. Inasmuch as the material yields in approximately a tangential direction at the end of the tooth engagement, there is much



خرید و دانلود مقاله درباره: فرز کاری فارسی و انگلیسی