واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تحقیق در مورد مثلث های رلو

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 16 صفحه

 قسمتی از متن .doc : 

 

تحقیق درباره بررسی و ارزیابی مثلث های رلو :

برای جابجا کردن یک جسم از چهار چرخه استفاده می کنیم ولی اگر جسم سنگین باشد ممکنست محور چرخها در اثر سنگینی جسم کج شده و یا بشکند. همانطور که اغلب دیده ایم برای حرکت دادن چنین اجسامی سنگینی بهتر است چند غلتک استوانه ای شکل (مثل لوله یا میله گرد قطور) را به موازات یکدیگر روی زمین قرار دهیم ، سپس یک صفحه محکم مسطح روی آنها بگذاریم و بعد جسم سنگین را روی این صفحه منتقل نمائیم ، با هل دادن این دستگاه ، صفحه با بارش روی استوانه ها غلتیده و به جلو خواهد رفت . ضمن حرکت باید هر یکاز استوانه ها را که به ترتیب از عقب دستگاه خارج می شوند برداشته و مجداَ در جلو صفحه روی زمین قرار دهیم .

اگر زمینی که دستگاه روی آن حرکت می کند مسطح باشد ، جسم بدون تکان و به محاذات خود خواهد رفت .

علت حرکت بدون تکان جسم اینست که مقطع استوانه ای چرخنده دایره است و دایره نیز به اصطلاح ریاضیدانان یک منحنی مسدود متساوی العرض می باشد که در نتیجه فاصله بین صفحه زیر جسم و زمین همیشه ثابت می ماند . اگر یک منحنی مسدود محدب رابین دو خط موازی محاط می کنیم به

طوریکه دو خط با دو سمت متقابل منحنی تماس حاصل می کنند ، فاصله بین دو خط موازی را عرض منحنی در جهت مفروض نامند .

طبق تعریف بالا یک بیضی دارای عرضهای مختلف در جهات مختلف می باشد و بر خلاف دایره ، متساوی العرض نیست .

حال اگر جسمی را روی تعدادی استوانه های بیضی القاعده قرار دهیم مسلماً به طور افقی حرکت نخواهد کرد و دایماً بالا و پایین خواهد جهید ، در حالیکه حرکت هموار همین جسم روی استوانه های با قاعده دایره بدین دلیل است که دایره دارای عرضهای مساوی در جهات مختلف می باشد و می توان آنرا بین دو خط موازی (یا دوصفحه موازی) چرخاند بدون اینکه لازم باشد

فاصله بین خطوط (و یا صفحات) را تغییر دهیم .

غالباً تصور می شود کهدایره تنها شکل هندسی است که در کلیه جهات متساوی العرض می باشد ، در حالیکه تعداد چنین منحنی هایی نامحدود بوده و هر یک از آنها می توانند به عنوان مقطعی از غلتکهای زیر جسم به کار روند و جسم را با نرمی و همواری به جلو رانند . این خود نمونه مثال کاملی است که نشان می دهد چگونه ممکنست تصورات ظاهری یک ریاضیدان باعث گمراهی و انحراف او گردد .

عدم اطلاع و شناخت چنین منحنی هایی نتایج اسف انگیزی در صنعت به بار می آورد ، بطور نمونه ممکنست در موقع ساختن یک زیربنای دریایی مدور ، فقط قطر مقاطع‌آنرا در جهات مختلف اندازه گرفته و کنترل کنیم . در حالیکه به سهولت مشاهده می شود بدنه چنین زیردریایی دارای ناهمواری های زیادی خواهد بود و هر چه با کنترل اقطار آن بخواهیم ناهمواریها را برطرف کنیم موفق نمی شویم .

به همین دلیل است که کنترل مقاطع مختلف یک زیردریایی و یا سایر صنایع دقیق را توسط قالبها و قواره های مخصوص (Tamplate) انجام می دهند .

ساده ترین منحنی غیر مدور متساوی العرض ، مثلث رلو می باشد که به نام ریاضیدان و استاد دانشکده فنی برلین ، مهندس فرانس رلو نامیده شده است ، ریاضیدانان قبل نیز این منحنی را می شناختند ولی اولین کسی که به خاصیت متساوی العرض بودن آن پی برد رلو بود .

ترسیم وساختن منحنی رلو ساده و به شکل زیر است :



خرید و دانلود تحقیق در مورد مثلث های رلو


توابع مثلثاتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة



خرید و دانلود  توابع مثلثاتی


توابع مثلثاتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة



خرید و دانلود  توابع مثلثاتی


توابع مثلثاتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة



خرید و دانلود  توابع مثلثاتی


توابع مثلثاتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

ارتفاع مثلث

ALTITUDE OF A Triangle

هر ارتفاع مثلث، پاره خطی است که یک سر آن یک رأس مثلث، و سر دیگر آن، پای عمودی است که از آن رأس بر ضلع مقابل به آن رأس فرود می‎آید؛ مانند ارتفاع هر مثلث، سه ارتفاع دارد، ، و که در یک نقطة مانند به نام مرکز ارتفاعی مثلث همرسند. اندازة ارتفاعهای ، و را بترتیب با ، و نشان می‎دهند.

اصل نامساوی مثلثی

Axiom Triangle Inequality

هر گاه A، B و C سه نقطة دلخواه باشند، آن گاه . تساوی، وقتی برقرار است که سه نقطه روی یک خط راست، و نقطة B بین دو نقطة A و C باشد.

انتقال) توابع مثلثاتی

Axiom Triangle Inequality

برای محاسبة مقادیر نسبتهای مثلثاتی در ربعهای دوم، سوم و چهارم می‎توان از رابطه‎‏های زیر استفاده کرد:

 

توابع کسینوس و سینوس دوره‎ای، با دورة ْ360 هستند:

 

تابع تانژانت دوره‎ای، با دورة ْ180است:

 

همچنین از تبدیلهای زیر نیز می‎توان استفاده کرد:

 

اندازة زاویه

Measure of an angle

نسبت آن زاویه است، به زاویه‎ای که به عنوان واحد زاویه اختیار شده است.

اندازة شعاع کرة محاطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة شعاع کرة محیطی چهار وجهی منتظم

( چهار وجهی منتظم

اندازة مساحت مثلث

Area of a Triangle

برابر است با نصف حاصلضرب اندازة هر ضلع مثلث در اندازة ارتفاع نظیر آن ضلع. اگر مساحت مثلث ABC را با S نمایش دهیم، داریم:

 

با توجه به این که است، داریم:

 

برای محاسبة مساحت مثلث از دستور که در آن و به دستور هرون Heron مرسوم است، نیز استفاده می‎کنند.

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of external angle bisectors of triangle

تصفیه: در هر مثلث، مربع اندازة نیمساز هر زاویة برونی، برابر است با حاصلضرب اندازه‎های دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد، منهای حاصلضرب اندازه‎های دو ضلع آن زاویه.

یعنی اگر در مثلث ABC AD(نیمساز زاویة برونی A باشد داریم:

 

اگر اندازة نیمسازهای زاویه‎ای برونی A، B و C از مثلث ABC را بترتیب با ، d(a و d(b و d(c محیط مثلث را با ‍P2 نشان دهیم، داریم:

 

 

 

اندازة نیمسازهای زاویه‎های برونی مثلث

Measure of internal angle bisectors of triangle

قضیه: در هر مثلث، مربع اندازة نیمساز هر زاویة درونی برابر است با حاصلضرب اندازة دو ضلع آن زاویه، منهای حاصلضرب دو پاره خطی که آن نیمساز بر ضلع سوم پدید می‎آورد. یعنی اگر AD نیمساز زاویة درونی A از مثلث ABC باشد، داریم:

 

اگر اندازة نیمسازهای زاویه‎های درونی A، B و C از مثلث ABC به ضلعهای BC=a ,AC=b و AB=c را بترتیب da، db و dc بنامیم، داریم:

 

 

 

تابع تانژانت

Tangent function

این تابع به صورت ‎tgx = yمی‎باشد. دورة تناوب آن ( است. کافی است نمودار تابع را در فاصلة



خرید و دانلود  توابع مثلثاتی