لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 24
یک ژنراتور الکتریکی دستگاهی است که از یک منبع انرژی مکانیکی تولید انرژی الکتریکی میکند. این فرآیند را تولید الکتریسته مینامند.
مقدمه
قبل از اینکه ارتباط بین مغناطیس و الکتریسته کشف شود، ژنراتورها از اصول الکتروستاتیک بهره میبردند. ماشین ویمشارت از القای الکتروستاتیک یا تأثیر کردن استفاده میکرد. ژنراتور واندوگراف از اثر تریبوالکتریک برق مالشی برای جدا سازی بارهای الکتریکی با استفاده از اصطکاک بین عایقها استفاده میکرد. ژنراتورهای الکتروستاتیک کارآمد نیستند و تنها برای آزمایشات علمی که نیازمند ولتاژهای بالا است، مناسب هستند.
فارادی
در سال 1831–1832م مایکل فارادی کشف کرد که بین دو سر یک هادی الکتریکی که بصورت عمود بر یک میدان مغناطیسی حرکت میکند، اختلاف پتانسیلی ایجاد میشود. او اولین ژنراتور الکترومغناطیسی را بر اساس این اثر ساخت که از یک صفحه مسی دوار بین قطبهای یک آهنربای نعل اسبی تشکیل شده بود. این وسیله یک جریان مستقیم کوچک را تولید می کرد.
دینامو
دینامو اولین ژنراتور الکتریکی قادر به تولید برق برای صنعت بود و کماکان مهمترین ژنراتور مورد استفاده در قرن بیست و یکم است. دینامو از اصول الکترومغناطیس برای تبدیل چرخش مکانیکی به یک جریان الکتریکی متناوب ، استفاده میکند. اولین دینامو بر اساس اصول فارادی در سال 1832 توسط هیپولیت پیکسی که یک سازنده تجهیزات بود، ساخته شد. این وسیله دارای یک آهنربای دائم بود که توسط یک هندل گردانده میشد. آهنربای چرخنده بگونهای قرار داده میشد که یک تکه آهن که با سیم پوشانده شده بود، از قطبهای شمال و جنوب آن عبور میکرد. پیکسی کشف کرد که آهنربای چرخنده ، هر بار که یک قطبش از سیم پیچ عبور میکند، تولید یک پالس جریان در سیم میکند. به علاوه قطبهای شمال و جنوب آهنربا جریانها را در جهتهای مختلف القا میکنند. پیکسی توانست با اضافه کردن یک کموتاتور جریان متناوب تولیدی به این روش را به جریان مستقیم تبدیل کند.
دیناموی گرام
به هر حال هر دوی این طرحها دارای مشکل یکسانی بودند: آنها پرشهای جریانی القا میکردند که از هیچ چیز پیروی نمیکرد. یک دانشمند ایتالیایی به نام آنتونیو پاسینوتی این مسأله را با جایگزینی سیم پیچ چرخنده توسط یک سیم پیچ حلقهای که او با سیم پیچی یک حلقه آهنی درست کرده بود، حل کرد. این بدان معنی بود که آهنربا همواره از بخشی سیم پیچ عبور میکرد که این مسأله موجب یکنواختی جریان خروجی میشد. زنوب گرام چند سال بعد در حین طراحی اولین نیروگاه تجاری در پاریس در دهه 1870م ، این طرح را دوباره ابداع کرد. طراحی وی با نام دینامی گرام معروف است. نسخههای مختلف و تغییرات زیادی از آن هنگام تا کنون در این طراحی بوجود آمده است، اما ایده اصلی چرخش یک حلقه بی پایان از سیم ، کماکان قلب تمامی دیناموهای پیشرفته باقی ماند.
مفاهیم
دانستن این مطلب مهم است که ژنراتور تولید جریان الکتریکی میکنند و نه بار الکتریکی که در سیمهای سیم پیچیاش وجود دارد. این تا حدودی شبیه یک پمپ آب است که ایجاد یک جریان آب میکند اما خود آب را ایجاد نمیکند. ژنراتورهای الکتریکی دیگری هم وجود دارند، اما بر اساس دیگر پدیدههای الکتریکی نظیر: پیزو الکتریسته و هیدرو دینامیک مغناطیسی ، ساختار یک دینامو شبیه یک موتور الکتریکی است و تمام انواع عمومی دیناموها میتوانند مانند موتورها کار کنند. همچنین تمامی انواع عمومی موتورهای الکتریکی میتوانند مانند یک ژنراتور کار کنند.
ژنراتورهای توربینی در بیش از 100 سال پیش که برای اولین بار وارد عرصه کاریشدند با هوا خنک میشدند. با این حال همچنان که خروجی واحد ژنراتور افزایش پیدا کردنیاز به خنککنندگی موثر افزایش یافت. این نیاز منجر به تکمیل ژنراتورهایی شد که باهیدروژن و آب، خنک میشدند. هدایت حرارتی هیدروژن، هفت برابر هوا بوده و با همانفشار مطلق، چگالی آن یک دهم هواست.پیش از انتخاب نوع سیستمخنککنندگی مورد استفاده برای ژنراتور، دوموضوع عمده وجود دارد که عبارتند از:اندازه مگاولت آمپر ژنراتور و یک سایت هوابا کیفیت خوب. با وجود این کهخنککنندگی با هوا نوعا برای واحدهایکوچکتر استفاده میشود هم اکنون اصلاحفنآوریهای جدید به هوا این امکان رامیدهد تا برای ژنراتورهایی که حداکثر30مگاولت آمپر ظرفیت دارند مورد استفادهقرار گیرد.
ژنراتورهای الکتریکی، حجم زیادی ازهوا را مصرف میکنند. در جایی که کیفیتهوا مساله ساز نیست ژنراتورها با سیستمخنککنندگی هوای باز که بازده بالایی از نظرفیلتراسیون و آب بندی محوری تحت فشاردارند بهترین انتخاب و همچنین دارایحداقل هزینه است.سایتهای نیروگاه قدرت که دارای ذراتریز و سولفور قابل ملاحظه هستند بایدژنراتورهایی را که خنککنندگی آنها با آب وهوای محبوس انجام میشود مورد بررسیقرار دهند. این ژنراتورها چنانچه دارای سیستم خنک کنندگی با آب و آب بندیمحوری تحت فشار با فیلترهای هوایجبرانی باشند از نظر فیزیکی بزرگتر هستند.ژنراتورهایی که خنککنندگی آنها با آب وهوای محبوس صورت میگیرد ازژنراتورهایی که خنککنندگی آنها با هوای بازانجام میشود گرانتر بوده و بازده کمتری نیزدارند.با این همه در حالی که ذرات ریز، یکموضوع قابل بررسی است و وقتی کهمسالهای از نظر ذخیرهسازی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 54
شیر وسیلهای معمولاً فلزی است که برای بازوبست، تنظیم و کنترل جریان مایعات یا گازها در لولهکشی به کار میرود. امروزه
انواع بسیاری از شیرها طراحی، ساخته و تولید می شوند که در صنعت و خانه به کار می روند. شیرآلات به گروه شیرهایی
گفته مشود که خود بنا به کاربرد، نحوه کارکرد یا شکل آن به زیرگروهای مختلف دسته بندی میشود
== تاریخچه==
اولین شیرهایی که بوسیله انسان اختراع شد، همان چیزی است که اکنون به عنوان '''(دریچه) آببند''' میشناسیم. دریچه ای که
با گذاشتن یا برداشتن آن در مسیر آب، جریان را بسته، باز یا نیمه باز می گذاشتند. شیرهای دروازه ای امروزی در واقع همان
آب بند های قدیمی هستند.
==انواع شیرآلات بنا به کاربرد==
شیرآلات خانگی و حمام که در انگلیسی به آن Faucet میگویند.
شیرآلات صنعتی که در ایران آنرا '''والو''' میخوانند. (Industrial Valve).
==انواع شیرآلات بنا به کارکرد==
شیرها یا برای باز و بست (قطع و وصل) جریان سیال استفاده میشوند، مانند:شیرهای توپی (Ball Valve)، شیرهای پروانه ای (Butterfly Valve)، شیرهای دروازه ای (Gate Valve)، شیر مخروطی (Plug Valve)
یا
برای تنظیم و کنترل جریان بکار میروند، مانند: شیرهای کره ای (Globe Valve)، شیر یکطرفه (Check Valve)، شیر سوزنی (Needle Valve)
غیر از موارد بالا می توان از شیرهای دیافراگمی-صفحه ای (Diaphragm Valve) نام برد. برخی از شیرهای فوق الذکر
ممکن است برای هر دو کاربرد استفاده شود مانند شیر توپی یا شیر پروانه ای.
== ساختمان شیر==
اغلب شیرها در ساختمان دارای اجزایی هستند که بین آنها مشترک است:
* بدنه (Body)
* دیسک (Disc) که در شیرهای توپی و مخروطی همان توپ یا استوانه مخروطی است.
* نشیمنگاه (Seat) محل نشستن دیسک و یا واسط بدنه و دیسک است. اغلب از جنس نرمی ساخته میشود تا کار آب بندی
را انجام دهد.
* دسته (Stem) و فلکه (Handwheel)، فلکه با دسته به دیسک وصل میشود، معمولا با چرخاندن فلکه شیر باز یا بسته میشود.
شیر یکطرفه که بطور خودکار تنها اجازه جریان در یک سو را میدهد، اجزای دسته و فلکه را ندارد
==جنس و مواد==
بنا به کاربرد، مصالحی که در ساخت شیر بکار برده میشود، مختلف است. در کارهای ساختمانی شیرهای چدنی، برنزی، برنجی
و گاهی استیل (SS) استفاده میشود.
در کارهای صنعتی مانند، نیروگاهها، کارخانه های پتروشیمی، پالایشگاهها، کشتی سازی و صنایع دارویی / غذایی، بسته به نوع
سیالی که از شیر عبور میکند ویا محیطی که شیر در آن قرار دارد، بدنه و دیگر اجزای آنرا از فولاد کربنی، فولاد آلیاژی، فولاد
زنگ نزن
(Stainless Steel) میسازند.
شیرها یا بوسیله دست یا عملگر خودکار (Actuator) باز و بست میشوند.
شیرآلات هیدرومکانیکال هدف از این بحث جلب همکاری علمی و فنی در زمینه های طراحی، ساخت و انتخاب شیرآلات هیدرو مکانیکال میباشد. ضمن معرفی مختصر از کار برد و پارامترهای انتخاب ومسائل قابل توجه در طراحی وساخت این شیرآلات سعی شده است با
دسته بندی پارامترها و مسائل در شکافته شدن موضوع، همکاران و مهندسان و محققان عزیزما را یاری نمایند. دانشجویان عزیز ضمن بهره برداری از اطلاعات با مشارکت در این مبحث و با ارائه نقطه نظرات خود به باروری و اثر بخشی
این اطلاعات کمک خواهندنمود. پارامترهای سهولت ساخت، هزینه خرید و نگهداری، میزان تحمل فشار و انتقال دبی و نوع ماموریت، تعیین کننده انتخاب شیر آلات میباشند. منظور از نوع ماموریت، شیرهای کنترل دبی خروجی و یاشیرهای قطع کن می باشد. شیرهای قطع کن معمولاً قبل از شیرهای کنترل و یا توربین ها کاربرد دارند و پشتیبانی به جهت قطع کامل را انجام میدهند. رایجترین این شیرها Butterfly valve یا شیر پروانهای، Ball value یا شیرهای کروی و Gate valve یا شیرهای
کشویی میباشند. شیرهای کنترل کنندهی دبی پیچیده تروگرانتر هستند. مشهورترین آنها Hollow Jet valve ،Howell Bunger valve
، Needle Valve (شیرهای سوزنی)، Sleeve Valve (شیرهای غلافی غرقابی) نام دارند. نکات مهم در طراحی و ساخت این شیرها عبارتند از: 1- نیروی راه انداز وتجهیزات خاص راه اندازی 2- ارتعاش شیر 3- کاویتاسیون 4- تاثیر در جریان 5- میزان تحمل فشار 6- آب بندی وموادمصرفی درآب بندها 7- سهولت تعمیرو نگهداری ونصب وتنظیم آنها 8- حوضچه های آرامش اغلب شرکتهای تجهیزات هیدرو مکانیکال دنیا نسبت به طراحی و ساخت این شیرآلات توجه داشته اند و بخشی از بازار مصرف را تصاحب نموده ا ند. در ایران شیرهای پروانه ای با قطر کمتراز 2متر ساخته میشوند. شیرهای کنترلی هاول بانگردر دو قطر 900 و1200 توسط شرکتهای نیرپارس وماشین سازی اراک طراحی وساخته شده اند، اما اغلب شیرآلات مورد نیاز پروژه های جاری وارداتی میباشند که
فرصت خوبی را برای تجهیزات سازان چه در تصاحب بازار داخلی و چه در سطح صادرات مهیا نموده است
شیر کشویی زبانه لاستیکی PN10/16
• طراحی و ساخت مطابق با استاندارد DIN 3352-part4 • قابل استفاده در کلیه 80((تاسیسات آبرسانی از جمله آب آشامیدنی و سیالات غیر خورنده تا دمای C • بدنه و کلاهک از جنس چدن داکتیل GGG40 ( DIN1693 )EN1563 حتی در شیرهای PN10 • زبانه ( گیت ) از جنس چدن داکتیل GGG40 با روکش لاستیکی از جنس EPDM با مقاومت عالی در مقابل سایش و پارگی • محور از جنس فولاد ضدزنگ 1.4021 (X20Cr13 ) با رزوه رولینگ شده و دارای استحکام فوق العاده • فاصله فلنج تا فلنج : طول کوتاه مطابق (DIN 3202-F4 ) EN558و طول بلند مطابق EN558 ((DIN 3202-F5 • ابعاد و سوراخکاری فلنج مطابق EN1092( DIN 28605 / DIN 2501 • پوشش رنگ پودری اپوکسی جامد روی کلیه سطوح داخلی و خارجی بصورت کاملا فراگیر
( جهت اطلاعات بیشتر رجوع به بخش 1) • سهولت باز و بسته شدن شیر و آببندی کامل • عدم نیاز به هیچگونه سرویس و نگهداری در طول بهره برداری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
رله نوعی کلید الکتریکی است که با هدایت یک مدار الکتریکی دیگر باز و بسته میشود.
رله را جوزف هنری در سال ۱۸۳۵ اختراع کرد.
از آنجا که رله میتواند جریانی قویتر از جریان ورودی را هدایت کند، به معنی وسیعتر میتوان آن را نوعی تقویت کننده دانست.
در گذشته رلهها معمولا با سیمپیچ ساخته میشد و از جریان برق برای تولید میدان مغناطیسی و باز و بسته کردن مدار سود میبرد. امروزه بسیاری از رلهها به صورت حالت جامد ساخته میشوند و اجزای متحرک ندارند. انواع رله های قدرت عبارتند از : رله دیستانس ، رله دیفرانسیل و رله بوخهولتز
رله سنجشی : رله ایست که بادقت و حساسیت معینی در موقع تغییر کردن یک کمیت الکتریکی و یا یک کمیت فیزیکی دیگری شروع به کار کند. چنین رله ای برای مقدار معینی از یک کمیت مشخص تنظیم می شود و اگر ان کمیت از مقدار تعیین و تنظیم شده کمتر ویا بیشتر باشد رله ان تفییرات را می سنجد رله سنجشی بر دو نوع است: ساده و مرکب. رله سنجشی ساده اغلب دارای یک سیم پیچی تحریک شونده می باشد که در اثر تغییر جریان ویا ولتاژ تحریک و موجب وصل شدن کنتاکتی می شود.(رله حرارتی و رله جریان زیاد و رله فشار کم) رله سنجشی مرکب دارای دو سیم پیچی تحریک شونده میباشد مثل رله ای که نسبت ولتاژ و جریان را می سنجد (رله سنجش مقاومت ظاهری) به کمک چنین سنجشی می توان ان قسمت از شبکه را که اتصالی شده است از مدار جدا کرد رله دیستانس. رله زمانی : رله زمانی نه تنها در حفاظت تاسیسات الکتریکی بلکه در خود کار کردن انها نیز مورد استعمال بسیار دارد رله زمانی هیچ وقت به تنهایی به کار برده نمی شود بلکه با رله سنجشی با حفاظت شبکه الکتریکی مصرف می شود و مورد استعمال ان در موقعی است که تاخیری عمدی در عمل قطع و وصل مورد نظر باشد.
رله جهت یاب : برای کنترل و سنجش جهت توان و نبرو در شبکه الکتریکی و یا قسمتی از شبکه جریان متناوب از رله جهت یاب استفاده می شود تعیین جهت نیرو برای حفاظت محلی و سلکتیو در اغلب شبکه ها کاملا ضروری و لازم است به کمک رله جهت یاب می توان فقط ان قسمت از شبکه که خسارت دیده و معیوب شده از مدار خارج کرد حتی می توان از این رله جهت حفاظت ژنراتور و توربین در موقع برگشت وات و نیرو نیز استفاده نمود در جریان دائم برای تعیین و مشخص کردن نیرو تنها سنجش جریان کافی است.
دستورالعمل سرویس و نگهداری رله ها و تجهیزات حفاظت الکتریکی
دوره زمانی: ماهانه
1- کنترل و بررسی در مدار بودن تجهیزات حفاظتی و رله ها و سالم بودن فیوزهای برق تغذیه رله ها
2- کنترل و مقایسه تنظیمات موجود مطابق با جداول تنظیمات در نظر گرفته شده و در صورت نیاز اصلاح آنها
3- کنترل و بررسی و بازدید جهت اطمینان از محکم بودن کلیه اتصالات برقی و مکانیکی
4- کنترل و ثبت مقادیر نشان داده شده توسط رله و تجهیزات حفاظتی به هنگام وقوع خطا
دوره زمانی:سالانه (طبق جدول برنامه ریزی شده و زیر نظر متخصص و کارشناس مجرب)
1- کنترل و کالیبره نمودن رله و تجهیز حفاظتی توسط دستگاه تستر مربوطه و ثبت مقادیر تست در جداول و فرمهای مربوطه
2- کنترل و تست صحت عملکرد رله.
3- تمیز نمودن رله و تجهیز حفاظتی از هر نوع آلودگی توسط جارو برقی صنعتی ,برس موئی و در صورت نیاز الکل صنعتی و پارچه تنظیف .
به طور کلی رله های حفاظتی باید دارای مشخصات زیر باشند :
سرعت عملکرد : این پارامتر در رله های حفاظتی بسیار حائز اهمیت است چون رله های حفاظتی هنگام خطا موظفند با سرعت هرچه تمامتر بخش های معیوب را از قسمت های سالم جدا نمایند .
حساسیت : این پارامتر به حداقل جریانی که سبب قطع رله می گردد بر میگردد .
تشخیص و انتخاب در شرایط خطا : این پارامتر نیز بسیار مهم است زیرا در شبکه هایی که دارای چند باس بار و رله حفاظتی هستند هنگام
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 19
فیزیک پلاسما از شاخههای فیزیک است که به بررسی یکی از اشکال وجود ماده یعنی پلاسما میپردازد.
از انجا که بخش بزرگی از جرم قابل مشاهدهٔ عالم، ستارگان با دماهای بسیار زیاد هستند، امکان وجود ماده به صورتهای جامد و مایع در این اجرام منتفی است. از سوی دیگر گاز نیز، به دلیل این حرارت بسیار زیاد، تبدیل به یک توده یونیزه شده و به صورت مخلوطی از یونهای مثبت(هسته اتم ها) یونهای منفی (الکترون ها) و ذرات خنثی در میاید.
در این توده، به دلیل وجود نیروهای الکتریکی که بسیار قوی تر از نیروی گرانشی است ذرات بر روی هم تأثیر زیادی میگذارند. به طوری که حرکت بخشی از این توده، باعث تغییر در وضعیت حرکت و انرژیِ بخشهای دیگر میشود که به این پدیده، اثر جمعی گفته شده، و هر گاه گاز به شدت یونیزه شده دارای این خاصیت باشد، پلاسما نامیده میشود و این بدین معنی است که بخش غالب ماده قابل مشاهده جهان، پلاسما است.
جالب این است که پلاسما ممکن است درعین حال دارای چندین دماباشد که این حالت باتوجه به اینکه میزان برخوردبین خود یونها یا خود الکترونها از میزان برخوردهای بین یک یون و یک الکترون بیشتراست میتواند پیش بیاید.
چند مورد از پلاسما که ما روزانه باآن سروکار داریم عبارت است از: جرقه رعدوبرق، تابش ملایم شفق قطبی، گازهادی داخل یک لامپ فلورسنت، چراغ نئون و یونش مختصری که در گازهای خروجی موشک دیده میشود.
پلاسما، امروزه نقش مهمی در توسعهٔ منابع انرژی، از راه همجوشی هستهای یافته است.
پلاسما گاز شبه خنثایی از ذرات باردار و خنثی است که رفتار جمعی از خود ارائه میدهد. به عبارت دیگر میتوان گفت که واژه پلاسما به گاز یونیدهشدهای اطلاق میشود که همه یا بخش قابل توجهی از اتمهای آن یک یا چند الکترون از دست داده و به یونهای مثبت تبدیل شده باشند. یا به گاز به شدت یونیزه شدهای که تعداد الکترونهای آزاد آن تقریبا برابر با تعداد یونهای مثبت آن باشد، پلاسما گفته میشود.
پلاسمای طبیعی
عموما پلاسما را مجموعهای از یونها ، الکترونها و اتمهای خنثی جدا از هم و تقریبا در حال تعادل مکانیکی ـ الکتریکی میگویند. حالتهای خاصی را در مقابل مغناطیس نشان میدهد. این رفتارها کاملا برعکس رفتار گازها در مقابل میدان مغناطیسی است. زیرا گازها به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.
در کنار این رفتار پلاسما میتواند تحت تاثیر میدان مغناطیسی درونی که از حرکت یونهای داخلی به عمل میآید قرار گیرد. همچنین پلاسما بعلت رفتار جمعیتی که از خود نشان میدهد، گرایشی به متاثر شدن در اثر عوامل خارجی ندارد. و اغلب طوری رفتار میکند که گویی دارای رفتار مخصوص به خودش است. معیار دیگر برای پلاسما آن است که فراوانی بارهای مثبت و منفی باید چندان زیاد نباشد که هر گونه عدم توازن موضعی بین غلظتهای این بارها غیر ممکن باشد.
مثلا بار مثبت به سرعت بارهای منفی را به سوی خود میکشد تا توازن بار از نوع برقرار سازد. بنابراین اگرچه پلاسما به مقدار زیادی بار آزاد دارد، ولی از لحاظ بار الکتریکی خنثی است. ماده در حالت پلاسما نسبت به حالتهای جامد ، مایع و گاز نظم کمتری دارد. با این حال خنثی بودن الکتریکی پلاسما بطور متوسط انرژی از نظم را نشان میدهد
چهارمین حالت ماده کدام است؟
اگر پلاسما تا دمای زیاد حرارت داده شود، نظم موجود در پلاسما از بین میرود و ماده به توده درهم و برهم و کاملا نامنظم ذرات منفرد تبدیل میشود. بنابراین پلاسما گاهی نظیر سیارات ، رفتاری جمعی و گاهی نظیر ذرات منفرد ، بصورت کاملا تکی عمل میکند. بدلیل همین رفتارهای عجیب و غریب است که غالبا پلاسما در کنار گازها و مایعات و جامدات ، چهارمین حالت ماده معرفی میشود. بنابراین با توجه به اینکه چگالی پلاسما قابل توجه میباشد. مدولانک در تک ذرات منفرد به مشکلات رفتار پلاسما افزوده میشود
ضرورت بررسی پلاسمای طبیعی
با وجود این پیچیدگیها با عنایت به اینکه 99 درصد ماده موجود در طبیعت و جهان در حالت پلاسما است. علاقمندی ما به پلاسما جدا از بسیاری کاربردها نظیر تولید انرژی ، عدسی پلاسمایی برای کانونش انرژی و ... معتدل میباشد، چرا که از ترک زمین ، با انواع پلاسماها مانند «یونسفر ، کمربندها و بادهای خورشیدی) مواجه میشویم. بنابراین فیزیک پلاسما نیز در کنار سایر شاخههای علوم فیزیکی ، در شناخت محیط زندگی ما در قالب رشته ژئوفیزیک از یک اهمیت زیادی برخوردار است
انواع پلاسما
پلاسمای جو
نزدیکترین پلاسما به ما «کره زمین) ، یونوسفر
(Ionosphere)
میباشد که از صد و پنجاه کیلومتری سطح زمین شروع و به طرف بالا ادامه مییابد. لایههای بالاتر یونسفر ، فیزیک سیستمها به فرم پلاسما می باشند که توسط تابش موج کوتاه در حوزه وسیعی ، از طیف اشعه فرابنفش گرفته تا پرتوهای ایکس و همچنین بوسیله پرتوهای کیهانی و الکترونهایی که به گلنونسفر اصابت میکنند یونیزه میشوند
شفق قطبی
پدیده شفق نیز نوعی پلاسما است که تحت اثر یونیزاسیون ایجاد میشود. یونسفر پلاسمایی با جذب پرتوهای ایکس ، فرابنفش ، تابش خورشیدی ، انعکاس امواج کوتاه و رادیویی اهمیت اساسی در ارتباط رادیویی در سرتاسر جهان دارد. با همه این احوال نه تنها زمین بلکه زهر و مریخ نیز فضایی یونسفری دارند
ملاحظات نظری نشان میدهد که در سایر سیارههای منظومه شمسی نظیر مشتری ، زحل ، اورانوس ، نپتون نیز باید یونسفرهای قابل مشاهده وجود داشته باشد. فضای بین سیارهای نیز از پلاسمای بین سیارهای در حال انبساط پر شده که محتوای یک میدان مغناطیسی ضعیف (حدود -510 تسلا) است
هستههای ستارگان دنباله دار نیز به فضای بین پلاسمایی پرتاب میکند. از طرف دیگر ، خورشید منظومه شمسی مانند یک کره پلاسمایی است. درخشندگی شدید خورشید ، معمولا عین یک درخشندگی پلاسمایی میباشد. خورشید به سه قشر گازی فتوسفر ـ کروموسفر و کورونا (که کرونای آن بیش از یک میلیون درجه ، حرارت دارد) احاطه شده است و انتظار میرود که هزارها سال به درخشندگی خود ادامه بدهد
کاربرد پلاسمای یونسفر
یونوسفر زمین در ارتباطات رادیویی اهمیت زیادی دارد. توضیح این نکته لازم است که یونوسفر ، امواج رادیویی با فرکانسهای بیش از 30 مگاهرتز (بین امواج رادار و تلویزیون) را عبور میدهد. ولی امواج با فرکانسهای کمتر (کوتاه ، متوسط و بلند رادیویی) را منعکس می کند. همچنین شایان ذکر است که ضخامت یونسفر زمین که از چند لایه منعکس کننده تشکیل شده است با عواملی نظیر شب و روز آشفتگی پلاسمایی سطح خورشید در ارتباط نزدیک میباشد
مگنتوسفر و کمربندهای تشعشعی زمین
میدانیم زمین ما دارای میدان مغناطیسی است که میتواند بر یونها و به طور خلاصه پلاسمای فضای اطرافش اثر بگذراد. بر طبق نظرات دینامو ، میدان مغناطیسی زمین از القای مغناطیس حاصل از حرکات ذرات داخل پلاسمای فضا به درون زمین متاثر میشود. که دوباره نقش فیزیک پلاسما را در ژئوفیزیک یادآوری میکند. به هرحال بطور نظری باید میدان مغناطیسی به شکل متقارن باشد لیکن فشار باد خورشیدی ، میدان ژئومغناطیس زمین را به صورت ستارگان دنبالهدار یا دکلی شکل در میآورد. که در اصطلاح به آن مگنتوسفر زمین گفته میشود. ساختمان این لایه پلاسمایی نیز خود از چند لایه تشکیل شده است.
ژئوفیزیکدانان با مطالعه اساسی این لایهها ، حد بالای آن را که حدودا 10 برابر شعاع زمین و در جهت خورشید میباشد، مغناطیس سکون مینامند. خارج از مغناطیس سکون ، ناحیه متلاطمی است که «غلاف» مغناطیس نام دارد و آن باد خورشیدی در نتیجه فشار مگنتوسفر جهت و سرعت خود را تغییر میدهد. مگنتوسفر زمین ، کمربند ایمنی زمین در مقابل ذرات خطرناک کم انرژی و حتی متوسط انرژی میباشد. به این کمربند حافظ امنیت زمین در مقابل اشعههای خطرناک و ذرات ساتع از خورشید ، اصطلاحا کمربندهای وان آلن (به افتخار کاشف این کمربندها) گفته میشود
آینههای مغناطیسی
با توجه به تاثیرات میدان مغناطیسی زمین بر روی پلاسما ، ذراتی که در میدان مغناطیسی زمین (کمربند وان آلن) گیر می اندازد. به واسطه داشتن میدان مغناطیسی قوی و ضعیف و در قطبین زمین حرکتی انجام میدهند که به مثابه یک آینه طبیعی میباشد. بنابراین آینه مغناطیسی که قبلا برای اولین بار توسط انریکو فرمی به عنوان مکانیسمی برای شتابدار ساختن پرتوی کیهانی استفاده شده بود، در ژئوفیزیک نیز به کار رفت
بادهای خورشیدی
خورشید منظومه شمسی منبع نیرومندی از جریان مداوم پلاسما به صورت باد خورشیدی است. باد خورشیدی اصطلاحی برای ذرات تشعشع یافته نظیر بادهایی در حدود 100 هزار درجه کلوین است. باد خورشیدی پدیده پیچیدهای است که سرعت و چگالی آن متغیر میباشد. متغیر بودن پلاسمای بادی به
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 12
رله
رله نوعی کلید الکتریکی است که با هدایت یک مدار الکتریکی دیگر باز و بسته میشود. رله را جوزف هنری در سال ۱۸۳۵ اختراع کرد.
از آنجا که رله میتواند جریانی قویتر از جریان ورودی را هدایت کند، به معنی وسیعتر میتوان آن را نوعی تقویت کننده دانست.
در گذشته رلهها معمولاً با سیمپیچ ساخته میشد و از جریان برق برای تولید میدان مغناطیسی و باز و بسته کردن مدار سود میبرد. امروزه بسیاری از رلهها به صورت حالت جامد ساخته میشوند و اجزای متحرک ندارند
رله دیستانس(رله مقاومت سنج):
رله دیستانس یک رله حفاظتی است که زمان قطع آن تابع مقاومت طول سیم می باشد.در بیشتر اوقات زمان قطع رله باید تابع محل اتصال کوتاه نسبت به رله باشد ، و از این رو این زمان باید تابع جهت معینی از انرژی اتصال کوتاه باشد.به طوریکه می دانیم هرچه محل اتصال کوتاه ازاز رله دور تر باشد ، مقاومت ظاهری قطعه سیم بین محل اتصالی تا رله بزرگتر شده و در نتیجه مقاومت اهمی و غیر اهمی آن نیز بزرگتر می شود.از آنجا که در رشد تاسیسات برقی رابطه مستقیمی بین مقاومت و طو ل سیم وجود دارد ، لذا با استفاده از رله دیستانس به عنوان رله حفاظتی در سراسر خطوط انتقال انرژی ، عملا مشکل حفاظت موضعی و تنظیم جهش زمانی رله های پی در پی بر طرف می شود.
چنانچه در شکل می بینیم،در موقع بروز اتصال کوتاه در نقطه غیر مشخص یک شبکه حلقوی تمام رله های دیستانسی که در شبکه نصب شده است و جریان اتصال کوتاه از آنها عبور می کند،تحریک می شوند ولی فقط نزدیکترین رله به محل اتصالی موفق به قطع سیم اتصالی شده از شبکه می شود. زیرا قطعه سیم بین این دو نقطه کوچکترین مقاومت را شامل است و به این خاطر زمان قطع این رله نیز از همه کوتاهتر می باشد.
رله دیستانس برای انجام صحیح وظیفه حفاظتی که بعهده دارد از اعضا زیادی تشکیل شده است مهمترین آنها عبارتند از :
1-عضو تحریک کننده
2-عضو سنجشی رله دیستانس (عضو زمانی)
3-عضو جهت یاب
4-تعداد زیادی رله کمکی
در ضمن باید دانست که عضو سنجشی رله دیستانس مطلقا مقدار قدر مطلق
عوامل موثر را نمی سنجد بلکه تغییرات مقدار کمیتی را که قبلا تنظیم شده است میسنجد .
عامل موثر در رله دیستانس میتواند هر یک از کمیتهای زیر باشد:
1- مقاومت ظاهری U/I=Z(امپدانس).
2- هدایت ظاهری I/U=1/Z (ادمیتانس).
3- مقاومت اهمی U.cos φ/I=Z.cos φ (رزیستسانس).
4- هدایت اهمی I.cosφ/U=cosφ/Z (کنداکتانس).
5- مقاومت غیر اهمی U.sinφ/I=Z.sinφ (رآکتانس).
6- هدایت غیر اهمی I.sinφ/U= sinφ/Z (سوسپتانس).
7- امپدانس مخلوط U+f(I)
رله ای که کمیت Z را اندازه گیری می کندرله امپدانس نامیده می شود و رله ای که X را می سنجد رله رآکتانس می گویند.
در گذشته برای حفاظت شبکه های بالاتر از 110KV از رله رآکتانس استفاده می شد ، زیرا در رله رآکتانس اثر نا مطلوب جرقه دخالت ندارد. همانطور که می ئانید قوس الکتریکی دارای مقاومت اهمی قابل ملاحظه ای می باشد که سبب تغییر دادن امپدانس خط و در نتیجه سنجش غلط توسط رله امپدانس می شود. اما امروزه با اضافه دستگاههای دیگری اثر نا مطلوب مقاومت قوس جرقه نیز در رله امپدانس خنثی شده است و به این خاطر از رله رآکتانس کمتر استفاده می شود.
رله دیستانس را نی توان حهت حفاظت هر شبکه ای با هر فشار الکتریکی به کار برد. برای حفاظت شبکه های به ولتاژ بالاتر از 60000 v هزار ولت , امروزه فقط از رله دیستانس استفاده می شود. همچنین به کمک رله دیستانس می توان ترانسفور ماتور ها و ژنراتورها را نیز حفاظت نمود.
رله دیستانس اولین بار در آلمان در سال 1923 در یک شبکه فشار قوی نصب شد. طرز کار رله دیستانس را به کمک شکل زیر می توان بیان نمود.
از الکترو مغناتیس 2 جریانی که متناسب با اتصال کوتاه است عبور می کند , به محض اینکه جریان اتصال کوتاه به مقدار معین برسد , هسته داخلی آن جذب شده و کنتاکت 4 بسته می شود و در نتیجه مدار رله قطع کننده کلید صلی بسته شده و سبب قطع می گردد.الکترومغناطیس 3 نیز بر روی ولتاژ خط نصب شده است و از بوبین آن جریانی متناسب با ولتاژ شبکه عبور می کند که موجب به وجود آمدن گشتاور مخالف برای کنتاکت می شود . پس هر چه ولتاژبیشتر باشد یا به عبارتدیگرهر چه اتصال کوتاه از محل نصب رله دورتر باشد نیروی مقاوم الکترو مغناطیس 3 بیشتر و در ضمن مقاومت ظا هری خط تا نقطه اتصالی نیز بیشتر می شود.
نوع دیگر رله دیستانی که توسط زیمنس ساخته شد :
, صفحه گردان آلومینیومی F در بین دو حوزه الکترو مغناطیسی که یکی توسط جریان و دیگری توسط ولتاژ خط تغذیه می شود قرار دارد.اثر نیروی بوبین جریان و بوبین ولتاژ در صفحه F مخالف یکدیگر می باشد و می توان توسط فرم مخصوصی