لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
تابع و لگاریتم در ریاضیات
تاریخچه مختصر ریاضیات
اولین مطلب :
تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند. البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد. قبل از تاریخانسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.از ریاضیدانان بزرگ اسلامی یکی خوارزمی میباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود.برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.تاریخچه و پیشینه تابع
«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 14
تابع متناوب
تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دورة تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
دوره تناوب اساسی (اصلی) تابع زیر را حساب کنید.
مثال 1 :
مثال 2 :
مثال 3 :
مثال 4: دوره تناوب اصلی تابع را پیدا کنید.
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
مثال 5 :
مثال 6 :
مثال 7:
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
مثال 8: توابع هیچکدام متناوب نمی باشند ولی متناوب است، و میباشد.
نکته 4:
اگر دوره تناوب تابع برابر باشد آنگاه دوره تناوب تابع برابر است.
نتیجه: دوره تناوب برابر و دوره تناوب برابر خواهد بود.
نکته 5:
هرگاه عبارت داده شده به صورت مجمع دو یا چند تابع متناوب باشد ابتدا دوره تناوب هریک را بدست آورده سپس بین آنها کوچکترین مضرب مشترک می گیریم (ک.م.م)
مثال 9: دوره تناوب تابع با ضابطه کدام است؟
1) 2) 3) 4)
توجه:
در تعیین ک.م.م کسرها باید بین صورتها ک.م.م. و بین مخرج ها ب.م.م بگیریم نسبت آنها جواب مسئله است.
مثال 10: دوره تناوب تابع کدام
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 14 صفحه
قسمتی از متن .doc :
تابع و لگاریتم در ریاضیات
تاریخچه مختصر ریاضیات
اولین مطلب :
تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند. البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد. قبل از تاریخانسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.از ریاضیدانان بزرگ اسلامی یکی خوارزمی میباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود.برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.تاریخچه و پیشینه تابع
«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک
لینک دانلود و خرید پایین توضیحات
دسته بندی : پاورپوینت
نوع فایل : .ppt ( قابل ویرایش و آماده پرینت )
تعداد اسلاید : 33 اسلاید
قسمتی از متن .ppt :
ساختارهای ابتدایی: مجموعه، تابع، دنباله و تجمیع(ساختمان گسسته) بخش 1.2 مجموعه ها (Sets)
درس ساختمان های گسسته
2
یک مجموعه (Set) چیست؟
یک مجموعه یک مجموعه نا مرتب از اشیا است.
اسامی افراد کلاس: {علی، احمد، زهرا، ...}
استان های ایران: {تهران، مازندران، گیلان، ...}
مجموعه می تواند شامل اجزای کاملا نا مرتبط نیز باشد: {تهران، 3، قرمز،ب}
خصوصیات مجموعه
ترتیب مهم نیست
{1, 2, 3, 4, 5} برابر است با {3, 5, 2, 4, 1}
مجموعه عضو تکراری نمی تواند داشته باشد
3
مشخص نمودن مجموعه
از حروف بزرگ (A, S…) برای نام گذاری مجموعه
از حروف کوچک ایتالیک (a, x, y…)برای اعضای مجموعه
راه ساده نمایش: لیست نمودن همه اعضای مجموعه
A = {1, 2, 3, 4, 5} ، همیشه امکان پذیر نیست
ممکن است از (...) نیز استفاده شود: B = {3, 5, 7, …}
ممکن است ابهام ایجاد کند
If the set is all odd integers greater than 2, it is 9
If the set is all prime numbers greater than 2, it is 11
معرفی یک مجموعه با بیان خصوصیت مشترک آنهاست (set builder notation )
D = {x | x is prime and x > 2}
E = {x | x is odd and x > 2}
4
مشخص نمودن مجموعه
یک مجموعه شامل (contains) تعدادی اعضای (members) یا المان های (elements) متفاوت است که آن مجموعه را می سازند
aA : a عنصری از مجموعه A است
4 {1, 2, 3, 4}
aA : a عنصری از مجموعه A نیست.
7 {1, 2, 3, 4}
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 16
تابع
قسمتی از نمودار یک تابع. هر عدد x در عبارت f(x) = x3 - x قرار میگیرد.
در ریاضیات، یک تابع رابطهای است که هر متغیر دریافتی خود را فقط به یک خروجی نسبت میدهد. علامت استاندارد خروجی یک تابع f به همراه ورودی آن، x میباشد یعنی. به مجموعه ورودیهایی که یک تابع میتواند داشته باشد دامنه و به مجموعه خروجیهایی که تابع میدهد برد میگویند.
برای مثال عبارت f(x) = x2 نشان دهنده یک تابع است، که در آن f مقدار x را دریافت میکند و x2 را میدهد. در این صورت برای ورودی 3 مقدار 9 به دست میآید. برای مثال، برای یک مقدار تعریف شده در تابع f میتوانیم بنویسیم، f(4) = 16.
معمولاً در تمارین ریاضی برای معرفی کردن یک تابع از کلمه f استفاده میکنیم و در پاراگراف بعد تعریف تابع یعنی f(x) = 2x+1 را مینویسم و سپس f(4) = 9. وقتی که نامی برای تابع نیاز نباشد اغلب از عبارت y=x2 استفاده میشود.
وقتی که یک تابع را تعریف میکنیم، میتوانیم خودمان نامی به آن بدهیم، برای مثال:
.
یکی از خواص تابع این است که برای هر مقدار باید یک جواب وجود داشته باشد، برای مثال عبارت:
یک تابع نمیباشد، زیرا ممکن است برای یک مقدار دو جواب وجود داشته باشد. جذر عدد 9 برابر 3 است و در این رابطه اعداد +3 و -3 به دست میآیند. برای ساختن یک تابع ریشه دوم، باید فقط یک جواب برای آن وجود داشته باشد، یعنی:
,
که برای هر متغیر غیرمنفی یک جواب غیرمنفی وجود دارد.
در یک تابع لزومی ندارد که حتماً بر روی عدد علمیاتی انجام گیرد. یک مثال که نشان میدهد که عملیاتی بر روی عدد انجام نمیشود، تابعی است که پایتخت یک کشور را معین میکند. مثلاً Capital(France) = Paris.
حال کمی دقیقتر میشویم اما هنوز از مثالهای خودمانی استفاده میکنیم. A و B دو مجموعه هستند. یک تابع از A به B با به هم پیوستن مقادیر منحصر به فرد درون A معین میشود و مجموعه B به دست میآید. به مجموعه A دامنه تابع میگویند؛ مجموعه B هم تمام مقادیری را که تابع میتواند داشته باشد شامل میشود.
در بیشتر زمینههای ریاضی، اصطلاحات تبدیل و نگاشت معمولاً با تابع هم معنی پنداشته میشوند. در هر حال ممکن است که در بعضی زمینههای خصوصیات دیگری داشته باشند. برای مثال در هندسه، یک نگاشت گاهی اوقات یک تابع پیوسته تعریف میشود.
تعاریف ریاضی یک تابع
یک تابع f یک رابطه دوتایی است، به طوری که برای هر x یک و فقط یک y وجود داشته باشد تا x را به y رابطه دهد. مقدار تعریف شده و منحصر به فرد y با عبارت (f(x نشان داده میشود.
به دلیل اینکه دو تعریف برای رابطه دوتایی استفاده میشود، ما هم از دوتعریف برای تابع استفاده میکنیم.
تعریف اول
تعریف ساده رابطه دوتایی عبارتست از: «یک رابطه دوتایی یک زوج مرتب میباشد». در این تعریف اگر رابطه دوتایی دلالت بر «کوچکتر از» داشته باشد آن گاه شامل زوج مرتبهایی مانند (2, 5) است، چون 2 از 5 کوچکتر است.
یک تابع مجموعهای از زوج مرتبها است به طوری که اگر (a,b) و (a,c) عضوی از این مجموعه باشند آن گاه b با c برابر باشد. در این صورن تابع مجذور شامل زوج (3, 9) است. رابطه جذر یک تابع نمیباشد زیرا این رابطه شامل زوجهای (9, 3) و (9, -3) است و در این صورت 3 با -3 برابر نیست.
دامنه تابع مجموعه مقادیر x یعنی مختصهای اول زوجهای رابطه مورد نظر است. اگر x در دامنه تابع نباشد آن گاه (f(x هم تعریف نشدهاست.
برد تابع مجموعه مقادیر y یعنی مختصهای دوم زوجهای رابطه مورد نظر است.
تعریف دوم
بعضی از نویسندگان نیاز به تعریفی دارند که فقط از زوجهای مرتب استفاده نکند بلکه از دامنه و برد در تعریف استفاده شود. این گونه نویسندگان به جای تعریف زوج مرتب از سهتایی مرتب (X,Y,G) استفاده میکنند، که در آن X و Y مجموعه هستند (که به آنها دامنه و برد رابطه میگوییم) و G هم زیرمجموعهای از حاصلضرب دکارتی X و Y است (که به آن گراف رابطه میگویند). در این صورت تابع رابطه دوتایی است که در آن مقادیر X فقط یک بار در اولین مختص مقادیر G اتفاق میافتد. در این تعریف تابع دارای برد منحصر به فرد است؛ این خاصیت در تعریف نخست وجود نداشت.