واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تاریخچه بمب اتمی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

تاریخچه بمب اتمی

!اطلاعات اولیه هانری بکرل نخستین کسی بود که متوجه پرتودهی عجیب سنگ معدن اورانیوم گردید. پس از آن در سال 1909 میلادی ارنست رادرفورد هسته اتم را کشف کرد. وی همچنین نشان داد که پرتوهای رادیواکتیو در میدان مغناطیسی به سه دسته تقیسیم می‌شوند (پرتوهای آلفا ، بتا و گاما). بعدها دانشمندان دریافتند که منشا این پرتوها درون هسته اتم اورانیم می‌باشد.

 

پیدایش بمب اتمی

در سال 1938 با انجام آزمایشاتی توسط دو دانشمند آلمانی به نامهای اتوهان و فریتس شتر اسمن ، فیزیک هسته‌ای به مرحله تازه‌ای پای نهاد. این فیزیکدانان با بمباران هسته اتم اورانیوم بوسیله نوترونها به عناصر رادیواکتیوی دست یافتند که جرم اتمی کوچکتری نسبت به اورانیوم داشت. برای توصیف علت ایجاد این عناصر لیزه میتنر و اتو فریش پدیده شکافت هسته را در اورانیوم تو ضیح دادند و در اینجا بود که ناقوس شوم اختراع بمب اتمی به صدا در آمد.هر فروپاشی هسته اورانیم می‌تواند تا ۲۰۰ مگا ولت انرژی آزاد کند. بدیهی است که اگر هسته‌های بیشتری فرو پاشیده می‌شد انرژی فراوانی حاصل می‌گردید. بعدها فیزیکدانان دیگری نیز در این محدوده به تحقیق پرداختند. یکی از آنان انریکو فرمی بود که بخاطر تحقیقاتش در سال ۱۹۳۸ موفق به دریافت جایزه نوبل گردید.

سیر تحولی و رشد

در سال 1939 یعنی قبل از شروع جنگ جهانی دوم در بین فیزیکدانان این بیم وجود داشت که آلمانیها به کمک فیزیکدانان نابغه‌ای مانند هایزنبرگ و دستیارانش می‌توانند با استفاده از دانش شکافت هسته‌ای بمب اتمی بسازند. به همین دلیل از آلبرت انیشتین خواستند که نامه‌ای به فرانکلین روزولت رئیس جمهور وقت آمریکا بنویسد. در آن نامه تاریخی از امکان ساخت بمبی صحبت شد که هرگز هایزنبرگ آن را نساخت.به این ترتیب دولتمردان آمریکا برای پیشدستی بر آلمان طرح مانهاتان را به راه انداختند، و از انریکو فرمی دعوت به عمل آوردند تا مقدمات ساخت بمب اتمی را فراهم سازد. سه سال بعد ، در دوم دسامبر 1942 در ساعت 3 بعد از ظهر نخستین راکتور هسته‌ای دنیا در دانشگاه شیکاگو آمریکا ساخته شد.در 16 ژوئیه 1945 نخستین آزمایش بمب اتمی در صحرای آلامو گرودو نیومکزیکو انجام شد. سه هفته بعد هیروشیما در ساعت 8:15 صبح روز 6 آگوست 1945 بوسیله بمب اورانیومی بمباران گردید. سپس ناکازاکی در 9 آگوست سال 1945 در ساعت حدود 11:15 بوسیله بمب پلوتونیومی بمباران شد. در طی آن بمبارانها صدها هزار نفر جان باختند.

 

پیشگامان ساخت بمب اتمی

انریکو فرمی و همکارانش در دانشگاه شیکاگو پس از ساخت نخستین راکتور هسته‌ای جهان به امید آنکه از راکتور هسته‌ای تنها در اهداف صلح آمیز استفاده شود، و دنیا عاری از سلاحهای اتمی گردد، در این زمینه گام برداشتند.

لیزه میتنر که لقب مادر انرژی اتمی گرفت، در سال ۱۸۷۸ در یک خانواده هشت نفری به دنیا آمد. وی سومین فرزند خانواده بود، با وجود تمامی مشکلاتی که بر سر راه وی بخاطر زن بودنش بود. در سال 1901 وارد دانشگاه وین شد و تحت نظارت بولتزمن که یکی از فیزیکدانان بنام دنیا بود فیزیک را آموخت. لیزه توانست در سال 1907 به درجه دکترا نایل گردد و سپس راهی برلین شد تا در دانشگاهی که ماکس پلانک ریاست بخش فیزیک آن را بر عهده داشت به مطالعه و تحقیق بپردازد.بیشتر کارهای تحقیقاتی وی در همین دانشگاه بود وی هیچگونه علاقه‌ای به سیاست نداشت، ولی به علت دخالتهای روز افزون ارتش نازی مجبور به ترک برلین گردید و در سال 1938 به یک انستیتو در استکهلم رفت. لیزه میتنر به همراه همکارش اتو فریش اولین کسانی بودند که شکافت هسته را توضیح دادند. آنان در سال 1939 در مجله طبیعت مقاله معروف خود را در مورد شکافت هسته‌ای ارائه دادند.بدین ترتیب راه را برای استفاده از انرژی هسته‌ای گشوده شد. به همین دلیل پس از جنگ جهانی دوم به میتنر لقب مادر بمب اتمی داده شد. ولی چون وی نمی‌خواست از کشف خود به عنوان بمبی هولناک استفاده گردد. بنابراین بهتر است به لیزه لقب مادر انرژی اتمی داده شود.

بمبهای هسته‌ای چگونه ساخته می‌شوند؟

بمبهای هسته‌ای به دو شکل ساخته می‌شوند. بمبهای شکافتی (اتمی) و بمبهای همجوشی (هیدروژنی). در حالیکه جزئیات این بمبها محرمانه است ولی نکات اساسی آنها قابل دسترس است. سوخت در یک بمب شکافتی مشتمل بر 235U و 239Pu تقریبا خالص است که هر دو هسته‌های شکافت پذیری دارند. یک تکه ی کوچک از چنین ماده‌ای نمی‌تواند منفجر شود، زیرا تعداد بسیار زیادی از نوترونها فرار می‌کنند. ولی در یک جرم به قدر کافی بزرگ (بحرانی) واکنش زنجیره‌ای صورت می‌گیرد. یک نوترون اولیه اتفاقی باعث شروع شکافت خواهد شد.یک بمب نوعی تقریبا 1024 نوترون در کمتر از 7-10 ثانیه آزاد می‌کند که باعث گرمای بسیار شدید می‌شود. همجوشی فرق دارد. همجوشی وقتی رخ می‌دهد که دو هسته سبک را آنقدر به هم نزدیک کنیم که در حوزه عمل جاذبه متقابل نیروی هسته‌ای قوی قرار گیرند. از آن به بعد به شدت همدیگر را جذب می‌کنند و اتمی سنگینتر تولید می‌کنند و مقداری انرژی آزاد می‌کنند.همجوشی را می‌توان در محیط پلاسمایی بوجود آورد و اخیرا با لیزر هم این کار را می‌کنند. در این همجوشی قرصهای کوچکی از دوتریم و تریتیم (عناصری سبک که هم خانواده هیدروژن هستند) را بوسیله فوجهای لیزری پر قدرت گرم می‌کنند. اگر توان لیزرها کم باشد انفجارهای کوچکی در این قرصهای کوچک رخ می‌دهد. اما اگر قدرت بالا باشد و در زمان کوتاه اثر کنند همجوشی رخ می‌دهد. توان این نوع لیزرها بیش از توان نیروی برق آمریکاست، پس تهیه‌اش بسیار سخت است

هولوکاست ؛ اولین بمب هیدروژنی اسرائیل

کارشناسان تسلیحات هسته ای غرب فاش کردند در حال حاضر رژیم صهیونیستی 300کلاهک هسته ای در اختیار دارد و دراستفاده از این سلاحهای مرگبارعلیه کشورهای خاورمیانه هیچ تردیدی ندارد.

گزارش خبرگزاری "مهر"، جرج بوش رئیس جمهور آمریکا چندی پیش در پیامی به مناسبت پنجاه و ششمین سالگرد تاسیس رژیم غاصب صهیونیستی بر تداوم تعهد خود به حمایت همه جانبه از اسراییل تاکید کرد.کارشناسان سیاسی حمایت آمریکا از اسرائیل را عامل اصلی موفقیت این رژیم در دستیابی به تسلیحات هسته ای دانسته اند . همچنین کارشناس تسلیحات هسته ای و مبارزه با تروریسم غرب هفته گذشته با تهیه گزارشی اعلام کردند: آمریکا، کشورهای اروپایی و باندهای بین المللی دررساندن مواد تولید بمب ازجمله اورانیوم و پلوتونیوم به ر‍ژیم صهیونیستی ازهیچ تلاشی فروگذارنبودند.این گزارش ثابت می کند که اسراییل طی سه دهه گذشته چند تن مواد خام هسته ای را از آمریکا وکشورهای اروپایی وارد کرده است وعملیات گسترش تکنولو‍ژی سلاح هسته ای را به طور جدی پس ازپایان حمله به مصر در سال 1973 آغاز کرده است.طی دو دهه گذشته اسراییل موفق شد به رتبه کشورهای بزرگ دارنده فنآوری و تکنولوژی هسته ای دست یابد و حتی ازکشورهای هند، پاکستان و کره شمالی دردستیابی وبالا بردن توان هسته ای



خرید و دانلود  تاریخچه بمب اتمی


تاریخچه پیل سوختی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

معرفی پیل سوختی / تاریخچه پیل سوختی /

اگر چه پیل‌سوختی به تازگی به عنوان یکی از راهکارهای تولید انرژی الکتریکی مطرح شده است ولی تاریخچه آن به قرن نوزدهم  و کار دانشمند انگلیسی سرویلیام گرو بر می‌گردد. او اولین پیل‌سوختی را در سال 1839 با سرمشق گرفتن از واکنش الکترولیز آب، طی واکنش معکوس و در حضور کاتالیست پلاتین ساخت.

واژه "پیل‌سوختی"  در سال 1889 توسط لودویک مند و چارلز لنجر به کار گرفته شد. آنها نوعی پیل‌سوختی که هوا و سوخت ذغال‌سنگ را مصرف می‌کرد، ساختند. تلاش‌های متعددی در اوایل قرن بیستم در جهت توسعه پیل‌سوختی انجام شد که به دلیل عدم درک علمی مسئله هیچ یک موفقیت آمیز نبود. علاقه به استفاده از پیل سوختی با کشف سوخت‌های فسیلی ارزان و رواج موتورهای بخار کمرنگ گردید.

فصلی دیگر از تاریخچه تحقیقات پیل‌سوختی توسط فرانسیس بیکن از دانشگاه کمبریج انجام شد. او در سال 1932 بر روی ماشین ساخته شده توسط مند و لنجر اصلاحات بسیاری انجام داد. این اصلاحات شامل جایگزینی کاتالیست گرانقیمت پلاتین با نیکل و همچنین استفاده از هیدروکسیدپتاسیم قلیایی به جای اسید سولفوریک به دلیل مزیت عدم خورندگی آن می‌باشد. این اختراع که اولین پیل‌سوختی قلیایی بود، “Bacon Cell” نامیده شد. او 27 سال تحقیقات خود را ادامه داد تا توانست یک پیل‌سوختی کامل وکارا ارائه نماید. بیکون در سال 1959 پیل‌سوختی با توان 5 کیلووات را تولید نمود که می‌توانست نیروی محرکه یک دستگاه جوشکاری را تامین نماید.

تحقیقات جدید در این عرصه از اوایل دهه 60 میلادی با  اوج گیری فعالیت‌های مربوط به تسخیر فضا توسط انسان آغاز شد. مرکز تحقیقات ناسا در پی تامین نیرو جهت پروازهای فضایی با سرنشین بود. ناسا پس از رد گزینه‌های موجود نظیر باتری (به علت سنگینی)، انرژی خورشیدی(به علت گران بودن) و انرژی هسته‌ای (به علت ریسک بالا) پیل‌سوختی را انتخاب نمود.

تحقیقات در این زمینه به ساخت پیل‌سوختی پلیمری توسط شرکت جنرال الکتریک منجر شد.  ایالات متحده فن‌آوری پیل سوختی را در برنامه فضایی Gemini استفاده نمود که اولین کاربرد تجاری پیل‌سوختی بود.

پرت و ویتنی دو سازنده موتور هواپیما پیل‌سوختی قلیایی بیکن را به منظور کاهش وزن و افزایش طول عمر اصلاح نموده و آن را در برنامه فضایی آپولو به کار بردند. در هر دو پروژه پیل‌سوختی بعنوان منبع انرژی الکتریکی برای فضاپیما استفاده شدند. اما در پروژه آپولو پیل‌های سوختی برای فضانوردان آب آشامیدنی نیز تولید می‌کرد. پس از کاربرد پیل‌های سوختی در این پروژه‌ها، دولت‌ها و شرکت‌ها به این فن‌آوری جدید به عنوان منبع مناسبی برای تولید انرژی پاک در آینده توجه روزافزونی نشان دادند.

از سال 1970 فنآوری پیل‌سوختی برای سیستم‌های زمینی توسعه یافت. تحریم نفتی از سال1973-1979 موجب تشدید تلاش دولتمردان امریکا و محققین در توسعه این فن‌آوری به جهت قطع وابستگی به واردات نفتی گشت.

در طول دهه 80 تلاش محققین بر تهیه مواد مورد نیاز، انتخاب سوخت مناسب و کاهش هزینه استوار بود. همچنین اولین محصول تجاری جهت تامین نیرو محرکه خودرو در سال1993 توسط شرکت بلارد ارائه شد.

انواع پیل‌سوختی و خصوصیات هر یک در جدول زیر مشخص است.

پیل سوختی قلیایی

پیل سوختی

متانولی

پیل سوختی

کربنات مذاب

پیل سوختی

اسید فسفریک

پیل سوختی

پلیمری

پیل سوختی

اکسیدجامد

الکترولیت

هیدروکسید پتاسیم

غشاء پلیمری

مایع کربنات مذاب ثابت

مایع اسید فسفریک ثابت

غشاء تعویض یونی

سرامیک

دمای عملیاتی

90-60

130-60

650

200

80

1000

بازده

60-40%

40%

60-45%

40-35%

60-40%

65-50%

توان تولیدی

تا 20 کیلووات

کمتر از 10 کیلووات

بیش از یک مگاوات

بیش از 50 کیلووات

تا 250 کیلووات

بیش از 200 کیلووات

کاربرد

زیر دریایی و فضایی

کاربردهای قابل حمل

نیروگاهی

نیروگاهی

وسائل نقلیه، نیرو گاهی کوچک

نیروگاهی

کارکرد و اهمیت پیل سوختی

شناخت کلی پیل‌سوختی

پیل‌‌سوختی نوعی سل الکتروشیمیایی است که انرژی شیمیایی حاصل از واکنش را مستقیماً به انرژی الکتریکی تبدیل می‌کند. سازه و بدنه اصلی پیل‌سوختی از الکترولیت، الکترود آند و الکترود کاتد تشکیل شده است. نمای کلی یک پیل‌سوختی به همراه گازهای واکنش دهنده و تولید شده و مسیر حرکت یونها در شکل ارائه شده است.

پیل سوختی یک دستگاه تبدیل انرژی است که به لحاظ نظری تا زمانی که ماده اکسید کننده و سوخت در الکترودهای آن تأمین شود قابلیت تولید انرژی الکتریکی را دارد. البته در عمل استهلاک، خوردگی و بد عمل کردن اجزای تشکیل دهنده، طول عمر پیل‌سوختی را کاهش می‌دهد.

در یک پیل‌سوختی، سوخت‌ به طور پیوسته به الکترود آند و اکسیژن به الکترود کاتد تزریق می‌شود و واکنش‌های الکتروشیمیایی در الکترودها انجام شده و با ایجاد پتانسیل الکتریکی جریان الکتریکی برقرار می‌گردد. اگرچه پیل‌سوختی اجزاء و ویژگیهای مشابه یک باطری را دارد اما از بسیاری جهات با آن متفاوت است. باطری یک وسیله ذخیره انرژی است و بیشترین انرژی قابل استحصال از آن به وسیله میزان ماده شیمیایی واکنش دهنده که در خود باطری ذخیره شده است (عموماً در الکترودها) تعیین می‌شود. چنانچه ماده واکنش دهنده در باطری کاملاً مصرف شود، تولید انرژی الکتریکی متوقف خواهد شد (باطری تخلیه می‌شود). در باطری های نسل دوم ماده واکنش دهنده با شارژ مجدد، دوباره احیا می‌شود که این عمل مستلزم تأمین انرژی از یک منبع خارجی است. در این حالت نیز انرژی الکتریکی ذخیره شده در باطری محدود و وابسته به میزان ماده واکنش دهنده در آن خواهد بود.

گاز‌ اکسید کننده نظیر هوا یا اکسیژن خالص در الکترود کاتد که با صفحه الکترولیت در تماس است جریان پیدا می‌‌کند و با اکسیداسیون الکتروشیمیایی سوخت که معمولاً هیدروژن است و با احیاء اکسید کننده انرژی شیمیایی گازهای واکنش‌گر به انرژی الکتریکی تبدیل می‌شود.

از نظر تئوری، هر ماده‌ای که به صورت شیمیایی قابل اکسید شدن باشد و بتوان آن را به صورت پیوسته (به صورت سیال) به پیل‌سوختی تزریق کرد، می‌تواند به عنوان سوخت در الکترود آند پیل‌سوختی مورد استفاده قرار گیرد. به طور مشابه ماده اکسید کننده سیالی است که بتواند با نرخ منا‌‌سبی احیا شود.

گاز هیدروژن به دلیل تمایل واکنش دهندگی بالا به همراه چگالی انرژی بالا به عنوان سوخت ایده‌آل در پیل‌سوختی مورد استفاده قرار می‌گیرد. هیدروژن را می‌توان از تبدیل هیدروکربن‌ها از طریق واکنش ‌کاتالیستی، تولید و به صورتهای گوناگون ذخیره سازی‌کرد. اکسیژن مورد نیاز در پیل‌سوختی به طور مستقیم از هوا تهیه می‌شود. بر روی سطح الکترودهای آند و کاتد پیل‌سوختی واکنش اکسیداسیون و احیاء در ناحیه سه



خرید و دانلود  تاریخچه پیل سوختی


تاریخچه فرش

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

جانها به قدوم ملک العرش نهادیم

ما دیده و دل در گرو فرش نهادیم 

 نقشی شود و بر زبر فرش در آید

هر نکته به ما از طرف عرش برآید 

تاریخچه فرش

 

فرش ایران دارای تاریخی بسیار طولانی است، در ایران از دیرباز بافتن انواع فرش متداول بوده و انگیزه ای اجدادی داشته است. به نوشته مورخان، جهانگردان، جنگجویان و آثار مکشوفه از گذشتگان گویای آن است که فرشبافی به صورت هنری دستی ، مردمی ، روستایی و عشایری در ایران سابقه بس دراز دارد.

 

پروفسور «رودنکو» کاشف «فرش پازیریک» معتقد است که قالی مذکور  کار مردم ماد یا پارس و پارت (خراسان بزرگ) است. توجه به نقش های مشابه و هم زمان این فرش در ستون های تخت جمشید نیز این نظریه را تایید می نماید. آثار دیگری از جمله نقاشیهای برخی هنرمندان قرون وسطی حاوی نقش قالیهایی است که گفته اند بافت ایران بوده است . برخی مورخان در مورد حمله رومیان به ایران و غارت دستگرد قالی را از جمله غنایمی که در این غارت به دست آورده شده، قید نموده اند و نیز منابع یونانی از قالیهای زربفت ایران یاد کرده اند. «فرش بهارستان» با آن همه هنرمندی که به تأیید روایات مختلف، دربافت آن به کار رفته بوده اگر چه گاه در تعریف از آن راه اغراق پیموده شده اما خود نشانگر پیشرفت صنعت فرشبافی و صنایع جنبی از جمله طراحی و رنگرزی در ایران قدیم می باشد. فرش به عنوان نمودی از فکر و اندیشه بشری و متاثر از حس نوجویی او در طول تاریخ خود با نشیب و فرازهایی روبرو بوده که گاه با فراغت فکری هنرمندان و محیط مناسبی که برای رشد و شکوفایی هنر ایشان ایجاد گردیده به حد اعلای خود رسیده و گاه صدماتی که بر اثر مصائب طبیعی و غیر طبیعی بر پیکر جامعه وارد شده، آن را به دوره نهفتگی و خمود سوق داده است.           

 

عصر مغول یعنی قرن هفتم هجری را می توان دروان بس غم انگیز برای انواع هنر ایرانی دانست و پس از آن قرون دهم  و یازدهم هجری را که عصر صفویان است زمان شکوفایی طبع هنری مردم ایران باید به شمار آورد. آغاز دوران صفوی متفارن با رشد بسیاری از هنرهای دستی و توسعه آن در کلیه شئون جامعه بوده است. بسیاری از هنرمندان ایرانی در این دوره ظهور کرده اند که با اغتنام فرصت از آرامش و محیط مساعدی که به وجود آمده عمر گرانبهای خود را بر سر ارتقاء سطح کیفی هنر و صنایع دستی نهاده اند وبا ابداع طرح ها و نقشه های زیبا و هنرمندانه جایگاه این صنایع به ویژه فرش را به حد اعلاء خود رسانیده اند و نام ایران را در سراسر جهان با آثار خود پرآوازه ساخته اند. با توجه به اهمیت عصر صفویه در اعتلاء هنر ایران و توجهی که در این زمان به صنعت قالیبافی مبذول شده، جا دارد به این عصر و وضعیت هنرمندان و قالیباقی آن مشروح تر بپردازیم.

 

 فرشهای دوران صفویه را می توان متعلق  به دو گروه زمانی دانست: اول: قالیهای بافته شده در دوران سلطنت شاه اسماعیل وشاه طهماسب که به" شاه طهماسبی" معروف است و خود مکتبی خاص دارد که به همین نام شهرت یافته. شاه طهماسب همواره به تشویق هنرمندان و قالیبافان و طراحان می پرداخت و خود از هنر بهره داشت و حتی نوشته اند، رنگرزی می دانست و مستقیمأ طراحی می نمود و بافندگان را راهنمایی می کرد. از این جهت در زمان پادشاهی او انواع صنایع ظریفه به ویژه قالی بافی راه ترقی پیمود و در طرح آن تغییرات کلی به وجود آمد. قالیهای ترنجدار جانشین آن گروه از قالیهایی شد که تا اواخر قرن 9 هجری در ایران بافته می شد و بعدأ به طرح مغولی و تیموری شهرت یافت. علاوه بر قالیهای ترنجدار در این دوره بافتن قالیهایی با طرح حیوان و شکارگاه متداول شد. دوم: قالیهای بافته شده در زمان شاه عباس که به مکتب " شاه عباسی" معروف است. در این دوره با اغتنام فرصت از وجود هنرمندان عصر نقشهای جدید به ویژه با استفاده از اسلیمی ها و گلهای مخصوص بوجود آمد برخی طرحهای قالی در مکتب شاه عباسی عبارتند از:/ الف – طرح ترنجدار یا لچک ترنج/ ب – طرح شکارگاه/ ج – طرح درختی/ د – طرح گلدانی .

 

اینک با توجه به سهولت ایجاد ارتباط بین هنرمندان نقاط مختلف و پیشرفت تکنیک طراحی و نقش پردازی، فرش همگام با سایر هنرها و صنایع مردمی رو به تکامل رفته است، طرحهای محلّی به نقاط دیگر برای بافت فرستاده می شود و هنرمندان از نتایج تجربیات دیگر همکاران خویش کاملاً با خبر می گردند. وسایل کار طراحی پیشرفت نموده و تکنیک جدید به کمک هنرمندان آمده و ایشان به مهارت در تهیه و تکثیر طرحهای خود اقدام می کنند. بازار های فرش جهانی به ویژه از اوائل قرن بیستم میلادی رونق گرفته و این خود تشویق دست اندرکاران را در پی داشته و به ویژه در تبریز، کرمان، کاشان، اصفهان، اراک ، داد و ستد این کالای ارزشمند را رونق داده و در این زمان است که بازار صادرات فرش های نو و کهنه گرم شده و کارگاه های بزرگ برای پاسخگویی



خرید و دانلود  تاریخچه فرش


تاریخچه سیستم گرمایش از کف

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

گرمایش از کف

تاریخچه سیستم گرمایش از کف

 

60 سال پس از میلاد مسیح به خواص و راحتی گرمایش از کف پی برده بودند. در آن زمان رومیان با ایجاد کانال های هو ای گرم در زیر زمین و یا با گرم کردن زمین حمام ها با آتش از زیر سطح , محیط خود را به شیوه ای بسیار مطلوب گرم می نمودند.

دو هزار سال بعد (طی 30 سال گذشته) با اختراع سیستمهای هیدرونیک (Hydraunic systems) و پمپ های انتقال سیالات در اروپا، سیستم گرمایش از کف (به خصوص با لوله های PE-X) به یکی از رایج ترین شیوه های مدرن گرمایشی تبدیل شد.

آشنایی با سیستمهای گرمایش از کف با افزایش روز افزون جمعیت و همچنین کاهش منابع انرژی، مصرف بهینه انرژی امری بدیهی می باشد. در این راستا نقش سیستم های گرمایشی بهینه ساختمان ها و مجتمع های مسکونی در کنترل و بهینه سازی مصرف انرژی مهم وقابل تامل می باشد. سیستم حرارتی گرمایش از کف که انتقال حرارت به صورت تشعشعی (تابشی) سهم زیادی در فرآیند گرمایشی آن دارد‏‏‎، درمقایسه با سایر سیستمهای حرارتی نه تنها در صرفه جویی و بهینه سازی مصرف انرژی بلکه در مقوله رفاه و آسایش ساکنان ساختمان ها دارای نقاط قوت بسیاری می باشد. در سالهای اخیر، سیستم گرمایشی از کف در کشورهای اروپائی و آمریکا بسیار متداول شده است و دلیل این گسترش روزافزون بهینه بودن مصرف انرژی، توزیع یکسان گرما در تمامی سطح و فضا و دوری از مشکلات موجود در سایر روش ها ، به عنوان مثال سیاه شدن دیوارها، گرفتگی و پوسیدگی لوله ها و… می باشد. استفاده از روش گرمایش از کف جهت گرمایش محل سکونت از دیرباز به طرق مختلف انجام می گرفته است. بطوریکه رومی ها زیر کف را کانال کشی کرده و هوای گرم را از آن عبور می دادند و کره ای ها دود حاصل از سوخت را قبل از اینکه از دودکش عبور کند از زیر کف انتقال می دادند. در سال 1940 نیز فردی بنام سام لویت برای این منظور لوله های آب گرم را در زیر کف قرار داد. درکشور ایران نیز درمناطق کوهستانی و سردسیر ازجمله آذربایجان این روش مورد استفاده قرار می گرفته، که بیشترین مورد استفاده آن درحمام ها بود. به طور کلی سه نوع روش گرمایش از کف موجود است: 1-گرمایش با هوای گرم 2-گرمایش با جریان الکتریسیته 3-گرمایش با آب گرم به دلیل اینکه هوا نمی تواند گرمای زیادی را درخود نگاه دارد روش هوای گرم در موارد مسکونی چندان به صرفه نیست و روش الکتریکی نیز فقط زمانی مقرون به صرفه است که قیمت انرژی الکتریکی کم باشد.درمقایسه با دو روش ذکر شده، سیستم گرمایش با آب گرم ( هیدرولیک) مقرون به صرفه تر و خوشایندتر می باشد. بدین خاطر سالهای متوالی در سراسر دنیا مورد استفاده قرار گرفته است. روش گرمایش از کف به عنوان راحت ترین، سالم ترین وطبیعی ترین روش برای گرمایش شناخته شده است. همانطور که افراد دریک روز سرد زمستانی توسط تشعشع خورشید احساس گرما می نمایند دراین روش نیز گرما را بوسیله انتقال حرارت تشعشعی(تابشی) از کف دریافت می کنند و یقیناً احساس آسایش بیشتری خواهند نمود. در این سیستم گرمایشی معمولاً دمای آب گرم موجود در لوله های کف خواب بین 30 تا60 درجه سانتی گراد می باشد که درمقایسه با سایر روشهای موجود، که دمای آب بین 54 تا 71 درجه سانتی گراد است، 20 تا40 درصد در مصرف انرژی صرفه جوئی می شود. در ساختمان هائی که دارای سقف بلند می باشند استفاده از سیستم گرمایش از کف باعث کاهش مصرف انرژی و صرفه جوئی در مصرف سوخت می شود، به این خاطر که در سایر روشها (مانند رادیاتور و بخاری) هوای گرم در اثر کاهش چگالی سبک شده و به سمت سقف می رود و اولین جائی را که گرم می کند سقف می باشد (این موضوع به طور واضح درسمت چپ شکل زیر مشخص می باشد). به علت بالا بودن دمای هوا در کنار سقف میزان انتقال حرارت آن به سقف از هرجای دیگر بیشتر است و این عامل باعث اتلاف مقدار زیادی انرژی می شود. درروش گرمایش از کف ابتدا قسمت پائین که مورد نیاز ساکنین است گرم می شود وهوا با دمای کمتری به سقف می رسد، که این یکی از مزایای اصلی این سیستم می باشد. یکی دیگر از مزایای استفاده از روش گرمایش از کف که امروزه بسیار مورد توجه واقع می شود آسایش و راحتی افراد می باشد، به طوریکه آسایش و راحتی فرد در محل سکونتش بدون اینکه از هر بابت دارای محدودیت باشد فراهم می شود. در نظر بگیرید که بدن شما در یک اتاق بگونه ای گرم شود که شما در هنگام استراحت هیچگونه هوای گرمی را استنشاق نکنید وتنفس شما بسیار ملایم صورت گیرد، این بهترین روش گرم کردن در یک آپارتمان و یا یک منطقه صنعتی است. همه اعضای بدن شما بخصوص پا که بیشترین فاصله را با قلب دارد همیشه گرم خواهد ماند و این برای انسان بسیار مطلوب خواهد بود. همانگونه که قبلاً اشاره شد در گرمایش بوسیله رادیاتور یا بخاری دمای قسمت پائین اتاق سردتر از بالای آن می باشد که این حالت برای کودکان که دارای اندام کوچکی هستند ناخوشایند است، بطوریکه افزایش البسه آنها برای جلوگیری ازبیماری، آزادی کودکانه آنها را محدود می کند. سیستم گرمایش از کف برخلاف رادیاتور که هوای محل سکونت را به دلیل گرمای بیش ازحد خشک می کند،رطوبت را درحد متعادل نگه می دارد. همانطور که می دانید بیشتر افراد از کثیف شدن دیوارها و محیط زندگی در اثر استفاده ازمنابع گرمایی همچون بخاری و رادیاتور احساس نارضایتی می کنند. از آنجا که درسیستم گرمایش از کف جریان هوا به آرامی از پایین به بالا می باشد بنابراین دیوار ها پاکیزه می مانند. همین امر در مورد افرادی که دارای آلرژی (حساسیت) هستند بسیار مورد اهمیت است زیرا که محیط زندگی عاری ازهرگونه محرک خواهد شد. استفاده از این سیستم در مکانهایی همچون آشپزخانه و حمام که کف آنها معمولاً خیس و مرطوب است مناسب بوده و باعث خشک شدن کف می شود. مسئله مهم دیگر اینکه در این روش رطوبت زمین که دربعضی ازمنازل منجر به بروز بیماریهای مفصلی می شود از بین رفته و باعث کاهش درد بیماران مبتلا به ناراحتی هایی از قبیل رماتیسم خواهد شد. همچنین از رطوبت دیوارها و کپک زدن آن که شکل خوشایندی ندارد جلوگیری می شود و دیگر اینکه در این سیستم جایی برای رشد و تکثیر حشرات موزی وجود ندارد. یکی دیگر از فواید سیستم گرمایش از کف این است که دیگر فضای منزل یا محل کار توسط دستگاههای رادیاتور و بخاری اشغال نمی شود و به همین منظور آزادی بیشتری در تغییر دکوراسیون محل زندگی خواهید داشت. شاید به نظر آید که به هنگام نصب سیستم کف خواب دیگر نمی توانید پوشش مورد علاقه تان را برای کف انتخاب کنید! ولی این طور نیست. مطمئن باشید که شما می توانید برای پوشش کف منزل خود از هر نوع مصالحی ازجمله سنگ، سرامیک، کاشی پارکت چوب وفرش نیز استفاده کنید بدون اینکه تأثیری درگرمای مطلوب محیط شما بگذارد. یکی دیگر از مزایای استفاده از سیستم گرمایش از کف در روشهای ذوب برف می باشد بطوریکه از این روش برای ذوب یخ یا برف موجود در پیاده روها، لنگرگاههای بارگیری، جاده ها، ورودی ساختمانها و بیمارستانها، باند فرود هواپیما و زمینهای ورزشی از جمله زمین فوتبال وغیره که دسترسی آسان و سریع به محل الزامی است می توان استفاده کرد. بطوریکه این روش علاوه برکاهش هزینه های برف روبی و نمک پاشی، در حفظ ساختار موارد گفته شده بسیار موثر خواهد بود .

سیستم گرمایش از کف چیست؟



خرید و دانلود  تاریخچه سیستم گرمایش از کف


تاریخچه رزین های تعویض یونی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 62

 

1- تاریخچه رزین های تعویض یونی

رزین های تعویض یونی ذرات جامدی هستند که می توانند یون های نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند.

در سال 1850 یک خاک شناس انگلیسی متوجه شد که محلول سولفات آمونیمی که به عنوان کود شیمیایی بکار می رود، در اثر عبور از لایه های ستونی از خاک، آمونیم خود را از دست می دهد بگونه ای که در محلول خروجی از ستون خاک، سولفات کلسیم در محلول ظاهر می شود.

این یافته توسط دیگران پیگیری شد و متوجه شدند که سیلیکات آلومینیوم موجود در خاک قادر به تعویض یونی می باشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیوم از ترکیب محلول و سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیوم بود.

به رزین های معدنی، زئولیت می گویند و در طبیعت سنگهای یافت می شوند که می توانند کار زئولیت های سنتزی را انجام دهند. این مواد، یون های سختی آور آب ( کلسیم و منیزیم) را حذف می کردند و بجای آن یون سدیم آزاد می کردند از اینرو به زئولیت های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیادی داشت چون احتیاج به استفاده از مواد شیمیایی نبود و اثرات جانبی هم نداشتند. اما زئولیت های سدیمی دارای محدودیتهایی بودند. این زئولیت ها می توانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونها بدون تغییر باقی می ماندند. از این رو آب تصفیه شده با زئولیت های سدیمی به همان اندازه آب خام، قلیاییت، سولفات، کلراید و سیلیکاتت دارند.

واضح است که چنین آبی برای صنایع مطلوب نیست. مثلاً بی کربنات سدیم محلول در آب می تواند مشکلاتی را در مراحل بعدی برای دیگ بخار بوجود آورد. زیرا در اثر حرارت به سود و گاز دی اکسید کربن تبدیل می شود. سود یکی از عوامل مهم در خوردگی موضعی در نیروگاههاست که بحث مفصل تر آن در مباحث آینده خواهد آمد. گاز دی اکسید کربن موجود در بخار آب در اثر میعان بخار به صورت اسید کرینیک در می اید که باعث خوردگی لوله های برگشتی می شود که بخار آب خروجی از توربین را به کندانسور (چگالنده) می برند.

یکی دیگر از اشکلات مهم استفاده از زئولیت ها ی سدیمی، عدم کاهش غلظت سیلیس در آب تصفیه شده می باشد که یکی از خطرناکترین ناخالصی های آب تغذیه دیگ بخار در فشارهای زیاد می باشد.

تحقیقات برای رفع عیوب زئولیت های سدیمی ادامه یافت تا آنکه در اواسط دهه 1930 در هلند زئولیت هایی ساخته شد که بجای سدیم فعال، هیدروژن فعال داشتند . این زئولیت ها که به تعویض کننده های کاتیونی هیدروژنی معروف شدند، می توانستند تمام نمکهای محلول در آب را به اسیدهای مربوط تبدیل کنند. بعنوان مثال بی کربناتهای کلسیم و منیزیم به اسید کربنیک تبدیل می شوند که اسید کربنیک بی دی اکسید کربن و آب تجزیه می شود.

دی اکسید کربن تولید شده را می توان توسط هوادهی یا هوازدایی از محیط حذف کرد. لذا با این روش تمام قلیاییت بی کربناتی حذف می شود. رزین های کاتیونی هیدروژنی جدید، سیلیس نداشته و علاوه بر این قادرند همزمان هم سختی آب را حذف کنند و هم قلیاییت آب را کاهش دهند.

آب خروجی از تعویض کننده کاتیونی هیدروژنی، اسیدی است و باید خنثی شود. این کار با اضافه کردن قلیا (‌باز) یا مخلوط کردن خروجی تعویض کننده کاتیونی هیدروژنی با خروجی تعویض کننده سدیمی (زئولیت ) امکان پذیر است.

تعویض کننده های کاتیونی هیدروژنی هم دارای محدودیت هایی هستند. هنوز آنیونها، مثل سولفات کلراید و سیلیکات حذف نمی شوند.

برای بهبود تکنولوژی تصفیه آب گام های اساسی در سال 1944 برداشته شد که باعث تولید رزین های تعویض یونی آنیونی شد. (3) رزین های کاتیونی هیدروژنی تمام کاتیونهای آب را حذف می کنند و رزین های آنیونی تمام آنیونهای آب از جمله سیلیس را حذف می نمایند. در نتیجه می توان با استفاده از هر دو نوع رزین، آب بدون یون تولید کرد. پیشرفت های بعدی که در دهه 1950 حاصل شد منجر به اختراع و تولید رزین های تعویض یونی ضعیف گردیدکه صرفه جویی قابل توجهی در مصرف مواد شیمیایی مورد نیاز برای احیاء رزین ها را باعث شد.

2- شیمی رزین ها

همانگونه که می دانید محلول های الکترولیت دارای یون های مثبت (‌کاتیون) و یونهای منفی (آنیون) هستند و از نظر بار الکتریکی خنثی هستند. یعنی مجموع آنیون ها و مجموع کاتیون ها از نظر بار الکتریکی با هم برابرند.

رزین های تعویض یونی شامل بار مثبت کاتیونی و بار منفی آنیونی می باشند به گونه ای که از نظر الکتریکی خنثی هستند. اما تعویض کننده ها با محلول های الکترولیت این تفاوت را داند که فقط یکی از دو یون، متحرک و قابل تعویض است. بعنوان مثال یک تعویض کننده کاتیونی سولفونیک دارای نقاط آنیونی غیر متحرکی است که شامل رادیکال های آنیونی می باشد که کاتیون های متحرکی مثل H+ یا Na+ می توانند به آن متصل باشند. این کاتیون های متحرک می توانند در یک واکنش تعویض یونی شرکت کنند و به همین صورت یک تعویض کنده آنیونی دارای نقاط کاتیونی غیر متحرکی است که آنیون های متحرکی مثل هیدروکسیل یا کلراید می توانند به آن متصل باشند.

در اثر تعویض یونی، کاتیون ها با آنیون های موجود در محلول با کاتیون ها و آنیون های موجود در رزین تعویض می شوند به گونه ای که هم محلول و هم رزی ناز نظر الکتریکی خنثی باقی می مانند. باید توجه داشت که در اینجا با تعادل جامد- مایع سروکار داریم بدون آنکه جامد در محلول حل شود. برای آنکه یک تعویض کننده یونی جامد، مفید باشد، باید دارای شرایط زیر باشد :



خرید و دانلود  تاریخچه رزین های تعویض یونی