واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

تحقیق درباره نانو تکنولوژی علم خواص عجیب مواد

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

نانو تکنولوژی علم خواص عجیب مواد

از نانوتکنولوژی، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام حیطه های زندگی دارد و از این رو توسعه آن می تواند به بهبود و تسهیل زندگی کمک فراوان کند.

اتم سنگ بنای بنیادی ماده است و در نتیجه اتم ها بسیار کوچک هستند. توصیف و تصور جهان در سطح اتم و ملکول دشوار است. این حیطه از علم به قدری عجیب است که بخشی خاص از فیزیک به آن اختصاص یافته شده که مکانیک کوانتم نام دارد. هدف این علم برای توصیف رخدادها در سطح اتم است.اگر قرار بود توپ تنیس را به طرف دیوار پرتاب کنید و توپ از آن بگذرد و به سوی دیگر دیوار برود، حتماً تعجب می کردید. اما این دقیقاً همان اتفاقی است که در مقیاس کوانتم رخ می دهد. در مقیاس بسیار کوچک، خواص ماده مانند رنگ، مغناطیس و توانایی انتقال برق نیز به شکل غیرمنتظره تغییر می کند. دیدن جهان اتم به معنای عادی کلمه میسر نیست، چون خواص آن کوچکتر از طول موج نور قابل دیدن است. اما در سال 1981 پژوهشگران شرکت آی بی ام نوعی میکروسکوپ ساختند که نام آن STM بود. اسم این میکروسکوپ در واقع از یک خاصیت در مکانیک کوانتم گرفته شده بود که در میکروسکوپ یاد شده به کار می رود. این دستگاه می توانست پستی و بلندی های در مقایس جهان نانو را نشان دهد. میکروسکوپ STM این امکان را به دانشمندان داد که برای اولین بار اتم ها و ملکول ها را ببینند. تصاویر این میکروسکوپ به زیبایی و وضوح تصاویر طبیعت اما در مقیاس تصورناپذیر نانومتر بود.

یک نانومتر یک میلیاردیم متر یا حدوداً به طول 10 اتم هیدروژن است. با وجودی که دانشمندان از سال های دهه 1950 درباره بررسی مواد در این مقیاس تلاش کرده بودند، آنان ناچار شدند تا اختراع میکروسکوپ STM صبر کنند تا به هدف خود برسند.

عموماً در این باره توافق وجود دارد که نانوتکنولوژی اشیاء بین یک تا 100 نانومتر را در بر می گیرد، هر چند که این تعریف تا حدی قراردادی است. برخی افراد اجسامی به کوچکی یک دهم نانومتر را نیز در نظر می گیرند که به اندازه پیوند بین دو اتم کربن است. در دیگر سوی این گستره در اجسام بزرگتر از 50 نانومتر قوانین فیزیک کلاسیک صدق می کند.

مواد بسیاری هستند که دارای خواص اجسام در مقیاس نانو هستند اما اسم نانوتکنولوژی به آنها اطلاق نمی شود. نانوتکنولوژی در پی آن است تا از خواص عجیب اجسام در مقیاس بسیار کوچک استفاده کند.

جورج اسمیت سرپرست بخش علم مواد در دانشگاه آکسفورد گفت در مقیاس نانو، خواص «جدید، هیجان انگیز و متفاوتی» یافت می شود. با کوچک تر شدن اجسام، نسبت بین فضای سطح و حجم آن افزایش می یابد. این امر بدان علت مهم است که اتم های موجود در سطح یک ماده معمولاً بیشتر از اتم های مرکز آن واکنش نشان می دهند. از این رو، اگر نقره به ذرات بسیار کوچک تبدیل شود، خواص ضدمیکروبی پیدا می کند که در حجم انبوه آن وجود ندارد. یک شرکت با تولید ذرات ریز از ترکیب اکسید سدیم از این خاصیت استفاده می کند و ماده ای تولید می کند که خاصیت کاتالیزوری آن بیشتر است.

در این جهان نادیدنی، ذرات کوچک طلا در دمای چند صد درجه پایین تر ذوب می شود و مس که معمولاً رسانای خوب الکتریسیته است، ممکن است در لایه های نازک و در مجاورت میدان مغناطیسی مقاوم شود.

الکترون ها (مانند همان توپ تنیس خیالی) می توانند از نقطه ای به نقطه دیگر بجهند و ملکول ها می توانند همدیگر را از مسافت های متوسط جذب کنند. این خاصیت به برخی حشرات اجازه می دهد روی سقف راه بروند، چون موهای ریز کف پایشان به سقف می چسبد.

اما یافتن خواص جدید در مقیاس نانو گام نخست است. گام بعدی استفاده از این دانش است. توانایی ساخت اجسام با دقت اتمی این امکان را به دانشمندان می دهد که موادی با خواص بهتر یا جدید نوری، مغناطیسی، حرارتی یا الکتریک تولید کنند.

اکنون انواع جدیدی از ماده تولید می شود. مثلاً شرکت نانوسونیک در ویرجینیا لاستیک فلزی تولید کرده است. این ماده مانند لاستیک انعطاف و انحنا می پذیرد اما الکتریسیته را مانند فلزی محکم منتقل می کند. مرکز تحقیقاتی جنرال الکتریک در پی ساخت سرامیک انعطاف پذیر است. در صورت موفقیت، از این ماده می توان در ساخت قطعات موتور جت استفاده کرد و موتورهایی ساخت که در دمای بیشتر با کارایی بهتری کار کند. چندین شرکت مشغول کار روی موادی هستند که روزی به صورت رنگ به سلول های خورشیدی بدل خواهد شد.

از آنجایی که نانوتکنولوژی کاربردهای گسترده ای دارد، بسیاری از افراد فکر می کنند این علم اهمیتی به مانند برق یا پلاستیک پیدا کند. مطالعات نشان می دهد نانو تکنولوژی با بهبود مواد و محصولات و تولید مواد کاملاً جدید بر تمام صنایع تأثیر خواهد گذاشت. افزون براین، فعالیت در حد کوچکترین مقیاس ها به پیشرفت های مهم در عرصه هایی مانند الکترونیک، انرژی و پزشکی زیستی خواهد انجامید.

آغاز نانوتکنولوژی

نانو تکنولوژی از یک رشته علمی خاص مشتق نمی شود. با وجودی که نانو تکنولوژی بیشترین وجه مشترک را با علم مواد دارد، خواص اتم و ملکول شالوده بسیاری از علوم است و در نتیجه دانشمندان حوزه های علمی به آن جذب می شوند. برآورد می شود در سراسر جهان حدود 000/20 نفر در نانو تکنولوژی کار می کنند. تحقیقات در مقیاس بسیار ریز در رشته های الکترونیک، نوروبیوتکنولوژی به ترتیب نانوالکترونیک، نانو اپتیکس و نانو بیوتکنولوژی نیز نامیده می شود.

پیشوند نانو از کلمه یونانی به معنای کوتوله مشتق می شود. براساس برآورد شرکت لاکس ریسرچ در نیوریورک، بودجه کل تحقیق و توسعه نانو تکنولوژی دولت ها و شرکت ها در سراسر جهان در سال 2004 بیش از 6/8میلیارد دلار بود. نیمی از این



خرید و دانلود تحقیق درباره نانو تکنولوژی علم خواص عجیب مواد


تحقیق درباره علم مغناطیس

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

تاریخچه

علم مغناطیس از این مشاهده که برخی سنگها (ماگنتیت) تکه‌های آهن را جذب می کردند سرچشمه گرفت. واژه مغناطیس از ماگنزیا یا واقع در آسیای صغیر ، یعنی محلی که این سنگها در آن پیدا شد، گرفته شده است. زمین به عنوان آهنربای دائمی بزرگ است که اثر جهت دهنده آن بر روی عقربه قطبهای آهنربا ، از زمانهای قدیم شناخته شده است. در سال 1820 اورستد کشف کرد که جریان الکتریکی در سیم نیز می‌تواند اثرهای مغناطیسی تولید کند، یعنی می‌تواند سمت گیری عقربه قطب نما را تغییر دهد.در سال 1878 رولاند (H.A.Rowland) در دانشگاه جان هاپکینز متوجه شد که یک جسم باردار در حال حرکت (که آزمایش او ، یک قرص باردار در حال دوران سریع) نیز منشاأ اثرهای مغناطیسی است. در واقع معلوم نیست که بار متحرک هم ارز جریان الکتریکی در سیم باشد. جهت مطالعه زندگینامه علمی رولاند فیزیکدان برجسته آمریکایی به کتاب زیر مراجعه شود:Phusics by John D.Miller,Physics Today , July 1976Rowland،s البته دو علم الکتریسیته و مغناطیس تا سال 1820 به موازات هم تکامل می یافت اما کشف بنیادی اورستد و سایر دانشمندان سبب شد که الکترومغناطیس به عنوان یک علم واحد مطرح شود. برای تشدید اثر مغناطیسی جریان الکتریکی در سیم می‌توان را به شکل پیچه‌ای با دورهای زیاد در آورد و در آن یک هسته آهنی قرار داد. این کار را می‌توان با یک آهنربای الکتریکی بزرگ ، از نوعی که معمولا در پژوهشگاههای برای کارهای پژوهشی مربوط به مغناطیس بکار می‌رود، انجام داد.

 

تولد میدان مغناطیسی

دومین میدانی که در مبحث الکترومغناطیس ظاهر می شود، میدان مغناطیسی است. این میدانها و به عبارت دقیقتر آثار این میدانها از زمانهای بسیار قدیم ، یعنی از همان وقتی که آثار مغناطیسهای طبیعی سنگ آهنربا (Fe3O4 یا اکسید آهن III) برای اولین بار مشاهده شد، شناخته شده‌اند. خواص شمال و جنوب یابی این ماده تاثیر مهمی بر دریانوردی و اکتشاف گذاشت با وجود این، جز در این مورد مغناطیس پدیده ای بود که کم مورد استفاده قرار می گرفت و کمتر نیز شناخته شده بود، تا اینکه در اوایل قرن نوزدهم اورستد دریافت که جریان الکتریکی میدان مغناطیسی تولید می‌کند.این کار تواأم با کارهای بعدی گاؤس ، هنری . فاراده و دیگران نشان دادند که این شراکت واقعی بین میدانهای الکتریکی و مغناطیسی وجود دارد و این دو توأم تحت عنوان میدان الکترومغناطیسی حضور دارند. به عبارتی این میدانها به طرز جدایی ناپذیری در هم آمیخته شده‌اند.

حوزه عمل و گسترش میدان مغناطیسی

تلاش مردان عمل به توسعه ماشینهای الکتریکی ، وسایل مخابراتی و رایانه‌ها منجر شد. این وسایل که پدیده مغناطیسی در آنها دخیل است نقش بسیار مهمی در زندگی روزمره ایفا می‌کنند. با گسترش و سریع علوم از اعتبار این علوم اولیه کاسته نمی‌شود و همیشه سازگاری خود را با کشفیات جدید حفظ می‌کند.

مغناطیسهای طبیعی و مصنوعی

بعضی از سنگهای آهن یاد شده در طبیعت خاصیت جذب اشیای آهنی کوچک ، مانند براده‌ها یا میخهای مجاور خود را دارند. اگر تکه‌ای از چنین سنگی را از ریسمانی بیاویزیم ، خودش را طوری قرار می‌دهد که راستایش از شمال به جنوب باشد، تکه‌های چنین سنگهایی به آهنربا یا مغناطیس معروف است.

یک تکه آهن یا فولاد با قرار گرفتن رد مجاورت آهنربا ، آهنربا یا مغناطیده می‌شود، یعنی توانایی جذب اشیای آهنی را کسب می‌کند. خواص مغناطیسی این تکه آهن یا فولاد هر چه به آهنربا نزدیکتر باشد، قویتر است. وقتی که تکه‌ای از آهن و آهنربا با یکدیگر تماس پیدا کنند ، مغناطش یا آهنربا شدگی به مقدار ماکزیمم (میخ آهنی که به آهنربا نزدیک شود خاصیت آهنربایی پیدا می‌کند و براده‌های آهنربا را جذب می‌کند) می‌باشد.



خرید و دانلود تحقیق درباره علم مغناطیس


تحقیق درباره علم فیزیک 28 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

فهرست مطالب

عنوان صفحه

فیزیک 2 تاریخچه علم فیزیک

نقش فیزیک درزندگی 4

فیزیک وسایر علوم 5

سرعت 8

کار 10

رابطه کار 11

محاسبه یکای کار 12

اهمیت کار 13

تعادل جسم صلب 14

شرایط تعادل جسم صلب 14

چگونگی اعمال شرط تعادل درمورد اجسام صلب 16

مکانیک تحلیلی 19

نیروی قیدی 20

تعادل پایدار، تعادل ناپدار ، تعادل بی تفاوت 22

گشتاور نیرو 23

خصوصیات گشتاور نیرو 24

قانون گشتاور 26

تعادل 26

جفت نیرو 27

فیزیک

فیزیک از واژه یونانی physikos به معنی « طبیعی» و physis به معنی « طبیعت گرفته شده است. پس فیزیک علم طبیعت است، به عبارتی در عرصه علم پدیده‌های طبیعی را بررسی می‌کند

علم فیزیک

علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه می‌کند. مفاهیم بنیادی پدیده‌های طبیعی تحت عنوان قوانین فیزیک مطرح می‌شوند. این قوانین به توسط علوم ریاضی فرمول بندی می‌شوند، بطوری که قوانین فیزیک و روابط ریاضی باهم در توافق بوده و مکمل هم هستند و دوتایی قادرند کلیه پدیده‌های فیزیکی را توصیف نمایند.

تاریخچه علم فیزیک

از روزگاران باستان مردم سعی می‌کردند رفتار ماده را بفهمند. و بدانند که: چرا مواد مختلف خواص متفاوت دارند؟ ، چرا برخی مواد سنگینترند؟ و ... همچنین جهان ، تشکیل زمین و رفتار اجرام آسمانی مانند ماه و خورشید برای همه معما بود.

قبل از ارسطو تحقیقاتی که مربوط به فیزیک می‌شد ، بیشتر در زمینه نجوم صورت می‌گرفت. علت آن در این بود که لااقل بعضی از مسائل نجوم معین و محدود بود و به آسانی امکان داشت که آنها را از مسائل فیزیک جدا کنند. در برابر سؤالاتی که پیش می‌آمد گاه خرافاتی درست می‌کردند، گاه تئوریهایی پیشنهاد می‌شد که بیشتر آنها نادرست بود.

این تئوریها اغلب برگرفته از عبارتهای فلسفی بودند و هرگز بوسیله تجربه و آزمایش تحقیق نمی‌شدند و بعضی مواقع نیز جوابهایی داده می‌شد که لااقل بصورت اجمالی و با تقریب کافی به نظر می‌رسید.

جهان به دو قسمت تقسیم می‌شد: جهان تحت فلک قمر و مابقی جهان. مسائل فیزیکی اغلب مربوط به جهان زیر ماه بود و مسائل نجومی مربوط به ماه و آن طرف ماه نیز «فیزیک ارسطو» یا بطور صحیحتر «فیزیک مشائی» بود که در چند کتاب مانند «فیزیک» ، « آسمان» ، « آثار جوی» ، « مکانیک» ، « کون و فساد» و حتی«مابعدالطبیعه» دیده می‌شد.

تا اینکه در قرن 17 ، گالیله برای اولین بار به منظور قانونی کردن تئوریهای فیزیک ، از آزمایش استفاده کرد. او تئوریها را فرمولبندی کرد و چندین نتیجه از دینامیک و اینرسی را با موفقیت آزمایش کرد. پس از گالیله ، اسحاق نیوتن ، قوانین معروف خود (قوانین حرکت نیوتن) را ارائه کرد که به خوبی با تجربه سازگار بودند.

بدین ترتیب فیزیک جایگاه علمی و عملی خود را یافت و روز به روز پیشرفت کرد، مباحث آن گسترده‌تر شد، تا آنجا که قوانین آن از ریزترین ابعاد اتمی تا وسیعترین ابعاد نجومی را شامل می‌شود. اکنون فیزیک مانند زنجیری محکم با بقیه علوم مرتبط است و هنوز هم به سرعت در حال گسترش و پیشرفت می‌باشد.

نقش فیزیک در زندگی

هر فرد بزرگ یا کوچک ، درس خوانده یا بی‌سواد ، شاغل یا بیکار خواه ناخواه با فیزیک زندگی می‌کند. عمل دیدن و شنیدن ، عکس العمل در برابر اتفاقات ، حفظ تعادل در راه رفتن و ... نمونه‌هایی از امور عادی ولی در عین حال وابسته به فیزیک می‌باشند.



خرید و دانلود تحقیق درباره علم فیزیک 28 ص


تحقیق درباره ی اصلاح نژاد دام علم و هنر تثبت ژنهای موثر در تولید اقتصادی دام می

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

اصلاح نژاد دام علم و هنر تثبت ژنهای موثر در تولید اقتصادی دام می‌باشد. اصلاح نژاد با انتخاب دامها و طیور برتر از لحاظ فنوتیپ و با کمک روشهای آمیزشی مناسب، دام و طیور برتر راایجاد می‌کند. اصلاح نژاد یک علم کاربردی بوده و در بخش‌های تخصصی با کاربرد دانش ژنتیک، دانش آمار و رایانه افق جدیدی پیدا کرده است.

چکیده:

مدلهای استفاده شده در ژنتیک کمی عمدتا اثر تجمعی ژنهایی را که عهده دار ایجاد تنوع در صفات می باشند مورد توجه قرار می دهند و فرض اصلی در این مبحث، تفکیک همزمان بسیاری از ژنهای کوچک اثر می باشد. این موضوع مورد تردید است که همه ژنهای مؤثر بر صفات کمی اثرات جزئی داشته باشند و ممکن است برخی از این ژنها سهم عمده ای در تنوع صفات به خود اختصاص داده باشند. متخصصین ژنتیک مولکولی قادر به تعیین ژنوتیپ آنها با استفاده از تکنیک های مولکولی بوده و قادرند بطور مستقیم نشان دهند که چگونه تنوع فنوتیپی از تنوع ژنتیکی موجود در ژنوم موجود ناشی می شود امروزه تکنیک های مولکولی و ژنتیک کمی بصورت مکمل یکدیگر استفاده می گردند. دو دیدگاه عمده برای تعیین ژنوتیپ در ژنتیک وجود دارد که عبارتند از: 1- استفاده از نشانگرهای غیر مستقیم، که در این روش تعیین ژنوتیپ با استفاده از نشانگرهایی که بر روی قطعه کروموزومی خاصی است صورت میگیرد. 2- دیدگاه ژنهای کاندیدا است که در این روش با توجه به اطلاعات موجود، خود ژن کنترل کننده صفت که پروتئین خاصی را کد می کند مورد بررسی قرار می گیرد که در واقع این ژنها به عنوان مارکرهای مستقیم صفات بیولوژیکی و فیزیولوژیکی بکار گرفته می شوند. این مقاله سعی دارد در یک نگرش اجمالی برخی از ژنهای کاندیدا برای کنترل صفات مهم اقتصادی یا ژنهای مرتبط با بروز ناهنجاری های ژنتیکی را معرفی کند.

1- ژن کاپا کازئین (K-Casein Gene):

ژنهای بخش کازئین شیر به چهار گروه عمده K-Casein (با وزن مولکولی 19800 دالتون و 169 اسید آمینه)، Beta-Casein (با وزن مولکولی 24000 دالتون و 209 اسید آمینه)، as1-Casein (با وزن مولکولی 23000 دالتون و 199 اسید آمینه) و as2-Casein (با وزن مولکولی 25000 دالتون و 207 اسید آمینه) تقسیم می شوند که در گاو، بر روی کروموزوم شمار 6 و در گوسفند و بز بر روی کروموزوم شماره 4 قرار گرفته اند. کاپا کازئین یکی از مهمترین پروتئینهای شیر است و توسط ژنی با پنج اگزون و چهار اینترون کنترل می گردد. مقدار پنیر تولیدی و همچنین مانده گاری شیر در خارج از یخچال بطور مستقیم به خصوصیات کاپا کازئین شیر بستگی دارد. الل B ژن کاپاکازئین که حاصل بروز جهش نقطه ای (T/C) در موقعیت اگزون 4 می باشد موجب بالا رفتن راندمان تولید شیر به پنیر می شود در کاتالوگهای اسپرم ژنوتیپهای BB یا AB بیانگر ژنوتیپ های مطلوب برای تولید شیر مورد استفاده در کارخانجات پنیرسازی می باشد. که موجب کاهش زمان انعقاد شیر و بالارفتن ثبات و استحکام دلمه شدن آن می شود.

2- ژن بتالاکتوگلوبولین (Beta-lactoglobulin):

بتالاکتوگلوبولین پروتئین اصلی بخش آب پنیر شیر نشخوارکنندگان است که دارای وزن مولکولی 18200 دالتون است که در گاو و بز بر روی کروموزوم شماره 11 و در گوسفند بر روی کروموزوم شماره 3 تعیین نقشه شده است. ژن بتالاکتوگلوبولین در گوسفند دارای 9737 جفت باز است و شامل 7 اگزون و 6 اینترون می باشد که اگزون 7 این ژن کاملا غیر فعال است و 6 اگزون اولیه مسئول تولید پروتئین بتالاکتوگلوبولین می باشند. ارتباط چندشکلی های موجود در این ژن با صفات تولیدی به خوبی مورد بررسی قرار گرفته است. ژن آلفا لاکتالبومین یکی دیگر از ژنهای بخش آب پنیر است که در گاو در کروموزوم 5 و در گوسفند در کروموزوم 3 شناسائی شده است و دارای 1400 دالتون وزن مولکولی است.

3- ژن فسفوانول کربوکسی کیناز (PEPCK):

این ژن آنزیمی را تولید می کند که این آنزیم، آنزیم کلیدی مسیر گلوکونئوژنز می باشد یعنی مسیری که از طریق آن از سوبستراهای متنوع غیر کربوهیدراته، گلوکز خالص بدست می آید. این آنزیم با سوبسترا قرار دادن فسفوانول و دکربوکسیلاسیون آن باعث تشکیل اگزالواستات پیروات می شود. بطور کلی دو نوع آنزیم فسفوانول کربوکسی کیناز وجود دارد که به دو دسته میتوکندریایی (PEPCK-M) و سیتوزولی (PEPCK-C) تقسیم می شود ژن کد کننده این آنزیم بعنوان یک ژن کاندیدا برای شناسائی تنوع اللی و ارتباط آن با صفات اقتصادی مرتبط با پرورش طیور شناخته شده است و عمدتا ناحیه پروموتور این ژن جهت تعیین ژنوتیپ بکار می رود. از طرفی ژن PEPCK-M ممکن است ژن پروموتور برای حساسیت یا مقاومت به بیماری مارک (Marek disease) باشد.

4- مجموعه ژنی کالپاین، کالپاستاتین (Calpain/Calpastatin):

تا کنون سه آنزیم از خانواده کالپاینها شناسائی شده که عبارتند از W-Calpain، M-Calpain و Calpastatin. که این آنزیمها نقش مهمی در رشد ماهیچه های اسکلتی و میزان تردی گوشت بعد از ذبح دارند که کالپاستاتین آنزیمی با عملکرد متفاوت در این سیستم می باشد. اکنون بخوبی روشن شده که تجزیه پروتئینهای میوفیبریل ماهیچه که توسط آنزیمهای کالپاین صورت می گیرد عمده ترین عامل تردی گوشت در هنگام جمود نعشی می باشد علاوه بر این به نظر میرسد که کالپاستاتین یک ممانعت کننده ویژه آندوژنوسی وابسته به کلسیم می باشد که از عمل آنزیمهای کالپاین جلوگیری میکند و از این طریق میزان تردی گوشت بعد از کشتار را عهده دار می باشد.

5- مجموعه ژنی هورمون رشد، گیرنده هورمون رشد (GH/GHR):

ژن هورمون رشد دارای 5 اگزون و 4 اینترون می باشد که کد کننده پروتئینی با 191-190 اسید آمینه می باشد که از غده هیپوفیز قدامی ترشح می شود این هورمون نقش کلیدی در فرایندهای متابولیکی مانند رشد، تولید مثل، پیری، پاسخهای ایمنی، بلوغ، اشتها، چربی لاشه و اسپرماتوژنز دارد بررسی جهشهای موجود در نواحی مختلف این ژن همواره مورد توجه بسیاری از متخصصان اصلاح نژاد می باشد. ارتباط چندشکلیهای این ژن با خصوصیات تولید شیر بطور وسیعی مورد بررسی قرار گرفته است. ژن گیرنده هورمون رشد دارای 10 اگزون و 9 اینترون می باشد که دایمر شدن آن با هورمون رشد، برای انتقال پیام هورمون رشد به داخل سلول لازم می باشد. ارتباط ژن گیرنده هورمون رشد با فنوتیپ کوتولگی و همچنین با خصوصیات تولید شیر و وزن از شیرگیری و وزن کشتار در سطح وسیعی بررسی شده است.

6- ژن لپتین (Leptin gene):

لپتین از واژه Leptus به معنی لاغری گرفته شده است این هورمون در نتیجه جهش ایجاد شده در سطح ژن مسئول چاقی تولید میشود منبع اصلی ترشح لپتین سلولهای آدیپوسیت بافتهای چربی بخصوص آدیپوز سفید می باشد. اعتقاد بر این است که این هورمون عمده ترین کنترل کننده اشتها، متابولیسم انرژی، بلوغ،



خرید و دانلود تحقیق درباره ی اصلاح نژاد دام علم و هنر تثبت ژنهای موثر در تولید اقتصادی دام می


تحقیق در مورد علم ریاضی 12ص

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 12 صفحه

 قسمتی از متن .doc : 

 

ریاضی

 هدف

«ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» .

دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.»

دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.»

اهداف گرایش‌های مختلف این رشته عبارتنداز:

1- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد.

2- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است.

3- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیش‌دانشگاهی باشند.

ماهیت :

« ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همه‌جا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند»

فارغ‌التحصیلان این رشته می‌توانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش‌ خصوصی در اموری همانند طراحی سیستمها در امر بهینه‌سازی و بهره‌وری ، در بخش صنعت برای اموری همانند مدل‌سازیهای ریاضی و در آموزش و پرورش و ... ، مسوولیتهای متفاوتی را به عهده گیرند.

گرایش‌‌های مقطع لیسانس:

«رئیس اتحادیه بین‌المللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.»

«ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان می‌پردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده می‌شود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان می‌گردد»

«وقتی صحبت از ریاضی محض می‌شود نباید تصور کرد که تنها باید در گوشه‌ای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایده‌های ریاضی از ذهن پژوهشگران نمی‌روید بلکه ریاضیدانها غالبا الهام خود را از طبیعت می‌گیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.»

عموما ریاضیات کاربردی به شاخه‌ای از ریاضی گفته می‌شود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،‌فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخه‌ای گفته می‌شود که به نظریه‌پردازی ریاضی می‌پردازد اما باید توجه داشت که امروزه این دو گرایش آن‌چنان در هم ادغام شده‌اندکه مرزی را نمی‌توان بین آنها مشخص کرد.

زیا گاه یک تئوری کاملا محض وارد مرحله کاربردی شده و چون در عمل با مشکل روبرو می‌شود، بار دیگر به حوزه تئوری برمی‌گردد و در نهایت پس از رفع نقایص، دوباره وارد مرحله کاربردی می‌شود. یعنی یک تعامل و ارتباط دوجانبه‌ای بین ریاضی کاربردی و محض وجود دارد و هریک از این دو شاخه، از تجربیات شاخه دیگر به بهترین نحو استفاده می‌کند و به همین دلیل یک ریاضیدان موفق باید از هر دو شاخه اطلاع داشته باشد.»



خرید و دانلود تحقیق در مورد علم ریاضی 12ص