واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

مقاله درباره. آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 36

 

آشنایی با ساختمان و عملکرد

نیمه هادی دیود و ترانزیستور

نیمه هادی ها و ساختمان داخلی آنها

نیمه هادی ها عناصری هستند که از لحاظ هدایت ، ما بین هادی و عایق قرار دارند، و مدار آخر نیمه هادیها ، دارای 4 الکترون می‌باشد.

ژرمانیم و سیلیکون دو عنصری هستند که خاصیت نیمه هادی ها را دارا می‌باشند و به دلیل داشتن شرایط فیزیکی خوب ، برای ساخت نیمه هادی دیود ترانزیستور ، آی سی (IC ) و .... مورد استفاده قرار می‌گیرد.

ژرمانیم دارای عدد اتمی‌32 می‌باشد .

این نیمه هادی ، در سال 1886 توسط ونیکلر کشف شد.

این نیمه هادی ، در سال 1810توسط گیلوساک و تنارد کشف شد. اتمهای نیمه هادی ژرمانیم و سیلیسیم به صورت یک بلور سه بعدی است که با قرار گرفتن بلورها در کنار یکدیگر ، شبکه کریستالی آنها پدید می‌آید .

اتم های ژرمانیم و سیلیسیم به دلیل نداشتن چهار الکترون در مدار خارجی خود تمایل به دریافت الکترون دارد تا مدار خود را کامل نماید. لذا بین اتم های نیمه هادی فوق ، پیوند اشتراکی برقرار می‌شود.

بر اثر انرژی گرمائی محیط اطراف نیمه هادی ، پیوند اشتراکی شکسته شده و الکترون آزاد می‌گردد. الکترون فوق و دیگر الکترون هائی که بر اثر انرژی گرمایی بوجود می‌آید در نیمه هادی وجود دارد و این الکترون ها به هیچ اتمی‌وابسته نیست.

د ر مقابل حرکت الکترون ها ، حرکت دیگری به نام جریان در حفره ها که دارای بار مثبت می‌باشند، وجود دارد. این حفره ها، بر اثر از دست دادن الکترون در پیوند بوجود می‌آید.

بر اثر شکسته شدن پیوندها و بو جود آمدن الکترون های آزاد و حفره ها ، در نیمه هادی دو جریان بوجود می‌آید.جریان اول حرکت الکترون که بر اثر جذب الکترون ها به سمت حفره ها به سمت الکترون ها بوجود خواهد آمد و جریان دوم حرکت حفره هاست که بر اثر جذب حفره ها به سمت الکترون ها بوجود می‌آید. در یک کریستال نیمه هادی، تعداد الکترونها و حفره ها با هم برابرند ولی حرکت الکترون ها و حفره ها عکس یکدیگر می‌باشند.

نیمه هادی نوع N وP

از آنجایی که تعداد الکترونها و حفره های موجود در کریستال ژرمانیم و سیلیسیم در دمای محیط کم است و جریان انتقالی کم می‌باشد، لذا به عناصر فوق ناخالصی اضافه می‌کنند.

هرگاه به عناصر نیمه هادی ، یک عنصر 5 ظرفیتی مانند آرسنیک یا آنتیوان تزریق شود، چهار الکترون مدار آخر آرسنیک با چهار اتم مجاور سیلسیم یا ژرمانیم تشکیل پیوند اشتراکی داده و الکترون پنجم آن ، به صورت آزاد باقی می‌ماند.

بنابرین هر اتم آرسنیک، یک الکترون اضافی تولید می‌کند، بدون اینکه حفره ای ایجاد شده باشد. نیمه هادی هایی که ناخالصی آن از اتم های پنج ظرفیتی باشد، نیمه هادی نوع N نام دارد.

در نیمه هادی نوع N ، چون تعداد الکترون ها خیلی بیشتر از تعداد حفره هاست لذا عمل هدایت جریان را انجام می‌دهند . به حامل



خرید و دانلود مقاله درباره. آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور


«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.

آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.

1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.

6Li+n→∝(2.05MeV) +3H(2.73MeV

مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.

2. آشکار سازی آشکارسازهای نوترونی صفحه ای:

برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)

شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.

در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.

طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.

آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.



خرید و دانلود  «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»


«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.

آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.

1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.

6Li+n→∝(2.05MeV) +3H(2.73MeV

مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.

2. آشکار سازی آشکارسازهای نوترونی صفحه ای:

برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)

شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.

در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.

طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.

آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.



خرید و دانلود  «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»


«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

«توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»

آشکار سازی های نیمه هادی نوترون برای رادیوبیولوژی نوترون و شمارش آن دارای اهمیت بسیار زیادی هستند. آشکار سازی های ساده سیلیکونی نوترون ترکیبی از یک دیود صفحه ای با لایه ای از یک مبدل مناسب نوترون مثل 6LiFمی باشند. چنین وسایلی دارای بهره آشکار سازی محدودی می باشندکه معمولاً بیشتر از 5% نیست. بهره آشکار سازی را می توان با ساخت یک ساختار میکرونی3D به صورت فرو رفتگی، حفره یا سوراخ و پر کردن آن با ماده مبدل نوترون افزایش داد. اولین نتایج ساخت چنین وسیله ای در این مقاله ارائه شده است.

آشکار سازهای سیلیکونیN با حفره های هرمی شکل در سطح پوشیده شده با 6LiF ساخته شده و سپس تحت تابش نوترونهای حرارتی قرار گرفتند. طیف ارتفاع پالس انرژی تابش شده به حجم حساس با شبیه سازی مورد مقایسه قرار گرفت. بهره آشکار سازی این وسیله در حدود 6.3% بود. نمونه هایی با سایز ستونهای مختلف ساخته شد تا خواص الکتریکی ساختارهای سه بعدی مورد مطالعه قرار گیرد.ضرایب جمع آوری بار در ستونهای سیلیکون از 10تا800 nm عرض و 80تا nm 200ارتفاع با ذرات آلفا اندازه گیری شد. بهره آشکار سازی یک ساختار 3D کامل نیز شبیه سازی شد. نتایج نشان از تقویت بهره آشکار سازی با فاکتور 6در مقایسه با آشکار سازهای صفحه ای استاندارد نوترون دارد.

1. مقدمه و اهداف: آشکار سازهای نوترونی نمی توانند مستقیماً برای آشکار سازی نوترونهای حرارتی به کار روند و باید از ماده ای استفاده کرد که نوترونها را به صورت تشعشع قابل آشکار سازی در آورد. مواد مختلفی برای این منظور وجود دارند که در بین آنها6Li از همه مناسب تر به نظر می رسد. واکنش گیر افتادن نوترون در6Li دارای سطح مقطع942 b در انرژی نوترونی0.0253eV است.

6Li+n→∝(2.05MeV) +3H(2.73MeV

مواد مبدل با پایه6Li دارای سطح مقطع گیر انداختن نورونهای بالایی بوده و انرژی محصولات تولید شده آن نیز برای آشکار شدن به قدر کافی بالا می باشد. هدف نهایی آشکار سازR&D که در اینجا شرح داده می شوند ایجاد یک سنسور تصویر برداری نوترون با حساسیت بالا و قدرت تفکیک فضایی مناسب است. ما قبلاً با موفقیت چیپMedipix-2 با چیپ سنسور صفحه ای پوشیده با مبدل نوترون6Li را آزمایش کرده ایم. قدرت تفکیک فضایی چنین وسیله ای در حدود 65nm(نشانه ای از FWHMتابع پخش خطی) به خوبی با ابزارهای تصویر برداری نوترون قابل رقابت است. نسبت سیگنال به نویز(SNR) آشکارسازی سیلیکون نیز بالاتر از آشکار سازهای نوترونی فعلی است. با این وجود بهره آشکار سازی چنین آشکارسازهای نیمه هادی صفحه ای(نسبت تعداد آشکار شده به تعداد نوترون برخوردی) در حدود5% محدود می باشد. بهره آشکارسازی را می توان با ایجاد حفره یا سوراخ هایی (ساختار 3D ) در بدنه آشکار ساز سیلیکون افزایش داد.

2. آشکار سازی آشکارسازهای نوترونی صفحه ای:

برای پیش بینی بهره آشکارسازی ساختار صفحه ای از یک بسته نرم افزار شبیه سازی مونت کارلو استفاده شد. این بسته ترکیبی بود ازMCNP-4C (شبیه سازی انتقال نوترونی) با SRIM/TRIM (قدرت توقف) و کد مونت کارلو C++ متعلق به خودمان(شبیه سازی انتقال انرژی، طیف ارتفاع پالس، بهره آشکار سازی و....)

شکل 1بهره آشکار سازی را در مقابل ضخامت ماده مبدل6LIF (6LI غنی شده تا 89%)، اول برای تشعشع قدامی که منحنی مقدار بیشینه 4.48% را در ضخامت 7mg/cm2 نشان می دهد. بهره آشکار سازی در ضخامتهای بیشتر از این حد کاهش می یابد چون ذرات آلفا و تریتیوم تولید شده در سطوح دورتر LiFاز مرز Si-LiF قادر به رسیدن به حجم حساس نیستند. به علاوه تعداد بیشتر نوترونها در نزدیکی سطح خارجی مبدل جذب می شوند(شکل 2a را ببینید). منحنی دوم در شکل1 مخصوص آشکار سازی است که از پشت تحت تابش قرار گرفته است.

در ضخامتهای بالا تراز7mg/cm2، بهره آشکار سازی در حدود 4.90%ثابت باقی می ماند. نوترونها به صورت قابل ترجیحی در نزدیکی مرز مبدل نیمه هادی جذب می شوند )شکل(b.2 و بهره آشکارسازی اشباع شده و مستقل از ضخامت آشکار ساز می باشد.

طیف انرژی تابشی در آشکار ساز صفحه ای ساده اندازه گیری شد(شکل 3). نمونه مورد استفاده یک آشکارساز سیلیکونی 5×5mm2و 300µm ضخامت بود. مقاومت حجم n-type در حدود 5kΩcm بود. بخشی از نمونه با لایه ای از6LiF با 89% لیتیوم پوشانده شده بود(به این دلیل فقط بخشی از آن پوشانده شده بود تا بخشی به صورت فضای باز برای کالیبراسیون انرژی با ذرات آلفای منبع کالیبراسیون در اختیار داشته باشیم). طیف حاصل را با نتایج شبیه سازی مونت کارلو مقایسه کردیم. شبیه سازی به خوبی با نتایج اندازه گیری شده مطابقت داشت. نمونه از پشت با دسته پرتو نوترون حرارتی مورد تابش قرار گرفت. اندازه گیریها در کانال افقی (هدایت نوترون) راکتور تحقیقاتی هسته ای LVR-15 در موسسه فیزیک هسته ای دانشگاه چک در Rez در نزدیکی پراگ انجام پذیرفتند. فلوی نوترون در حدود106cm-2s-1در قدرت راکتور8MW بودند.

آلفا و تریتون تولید شده از واکنش گیر انداختن نوترون حرارتی اغلب در جهتهای متضاد به حرکت در می آیند (شکل4) آشکارساز صفحه ای ساده یکی از دو ذره الفا یا تریتون را آشکار می کند نه هر دو را. بنابر این طیف انرژی تابشی هرگز دارای انرژی بالاتر مربوط به تریتون نخواهد بود.



خرید و دانلود  «توصیف آشکار سازهای نیمه هادی سه بعدی نوترونهای حرارتی»


دانلود فایل گزارش کارآموزی عمران مخزن آب 14000 متر مکعبی نیمه مدفون.

دانلود فایل گزارش کارآموزی عمران مخزن آب 14000 متر مکعبی نیمه مدفون.

 

گزارش کارآموزی

رشته :

عمران

مکان کارآموزی:

بلوار نهارخوران عدالت 46 (استرابادی ) دهم نبش اوحدی 4

موضوع :

مخزن آب 14000 متر مکعبی نیمه مدفون

فرمت فایل: ورد

تعداد صفحات:23

 

 

 

 

 

مقدمه :

شرکت آب و فاضلاب شهری استان گلستان از شرکتهای دولتی وابسته به وزارت نیرو می باشد . که در خصوص تامین وتوزیع آب شرب سالم فعالیت می کند .

بخشی از فعالیت های این شرکت شامل خط لوله وتصفیه خانه ، خط انتقال ، حفر چاههای آب ، حفاری چاههای عمیق ، و حفاظت و نگهداری مخازن و .. می باشد .

کارفرمای پروژه مخزن 14000 متر مکعبی شرکت آب و فاضلاب استان گلستان و دستگاه نظارت ، شرکت مهندسی پارس کنسولت می باشد و پیمانکار پروژه شرکت ساختمانی فولاد خمش .

نکاتی در مورد اصول طراحی مخازن آب شرب و انواع مخازن :

به طور کلی دو علت عمده برای وجود مخزن تامین فشار در شبکه توزیع آب شرب و جبران نوسانات ساعتی مصرف آب می باشد .

انواع مخازن از نظر نوع مصالح مصرفی به دو دسته مصالح فلزی و مصالح بتنی تقسیم می شوند . معمولا مخازن با حجم کمتر از 200 مترمکعب که به صورت مخازن هوایی ساخته می شوند فلزی هستند و مخازن زمینی عمدتا بتنی هستند .

از نظر محل استقرار مخازن به دو دسته هوایی وزمینی تقسیم بندی می شوند .

از نظر شکل هندسی مخازن به دو دسته مکعب مستطیل و استوانه ای شکل تقسیم بندی می شوند . که نوع نخست برای مخازن آب شرب ، استخرهای شنا ، حوضهای پیش ته نشینی در تصفیه خانه آب و نوع دوم برای مخازن ته نشینی اولیه و ثانویه در تصفیه خانه های فاضلاب و مخازن ذخیره نفت استفاده می شود.

از نظر پوشش سقف مخازن به دو دسته مسقف و غیرمسقف تقسیم می شود که نوع نخست برای مخازن اب شرب ، مخازن نفت و نوع غیر مسقف برای استخرهای شنا ، مخازن تصفیه خانه های آب و فاضلاب و مخازن پرورش ماهی و کشاورزی استفاده می شود .

از نظر سازه ای مخازن به سه دسته سیستم سقف دال تخت با کتیبه های قارچی شکل ، سیستم های تیردال و سیستم سقف تیرچه بلوک تقسیم بندی می شوندکه سیستم سازه ای استفاده شده در پروژه مخزن استرابادی ، سیستم سقف دال تخت با کتیبه های قارچی شکل استفاده شده است .

سیستم اتصال سقف به دیوار برای مخازن مسقف ، اتصال آزاد ( مفصل) و اتصال گیردار (صلب) می باشد. که نمونه استفاده شده در پروژه مخزن استرابادی سیستم اتصال آزاد ( مفصل ) می باشد .

به طور کل در بحث بارگزاری بارهای وارده به مخازن به چند دسته تقسیم بندی می شوند که شامل بارهای مرده مثل بارکف ، دیواره ها ، سقف ، ستونها و غیره که جز اجزای دائمی سازه هستند و بارهای زنده که شامل بار وزن آب که به کف وارد می شود و بار برف و بار وسایل نقلیه . بار ناشی از فشار استاتیکی مایع داخل مخزن ، بار ناشی از فشار استاتیکی خاک به دیواره ها ، بار ناشی از نیروی برکنش یا up lift ، نیروهای ناشی از تغییر درجه حرارت و نیروهای ناشی از وقوع زلزله که برای بدست آوردن نیروهای ناشی از وقوع زلزله سه روش وجود دارد که شامل روش تحلیل استاتیکی معادل ، روش شبه دینامیکی یا تحلیل طیفی و روش دینامیکی یا تاریخچه زمانی می باشد .



خرید و دانلود دانلود فایل گزارش کارآموزی عمران مخزن آب 14000 متر مکعبی نیمه مدفون.