واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

مقاله درباره: پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .

این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .

با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .

همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .



خرید و دانلود مقاله درباره: پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


مقاله درباره. پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 30

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .

این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .

با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .

همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .



خرید و دانلود مقاله درباره. پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


تحقیق در مورد FMEA مفاهیم و روش پیاده سازی

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 10 صفحه

 قسمتی از متن .doc : 

 

FMEAمفاهیم و روش پیاده سازیدر حیطه فعالیتهای تولیدی و خدماتی ، مسائلی نظیر :شدت رقابت، بالا رفتن توقع و تغییرات خواسته ها و انتظارات مشتری، تحولات روز افزون فناوری، باعث افزایش تعهدات تولید کنندگان در زمینه رفع عیوب در محصول و امحا هرگونه کمبود و انحراف در عملکرد آن است.در غیر این صورت، سهم بازار به دلیل کاهش رضایت مشتری ، از دست خواهد رفت. برای تحقق هدف یاد شده، سازمان های امروزی از ابزاری به نام "روش های تجزیه و تحلیل عوامل شکست و آثار آنها " یا FMEA استفاده کرد و مطمئن می شوند که محصولی بدون عیب و قابل رقابت به بازار عرضه می کنند.با استفاده از این ابزار کارآمد، میتوان حالات بالقوه خرابی در سیستم ، فرایند، محصول و خدمت را شناسایی و اولویت بندی کرد ، اقدامات لازم برای حذف یا کاهش میزان وقوع حالات بالقوه خرابی را تعریف و تعیین کرد ودر نهایت ، نتایج تحلیل های انجام شده را با هدف تهیه مرجعی کامل برای حل مشکلات آتی، به ثبت رساند.

مطالبی که در زیر میخوانید مفاهیم و روش پیاده سازی ضمن معرفی تکنیک یاد شده FMEA آنالیز حالات بالقوه خرابی ، انواع کاربردهای آن را در موارد مختلف :طراحی قطعه /محصول، طراحی سیستم، فرایندهای تولید، ماشین ها و ابزارهای تولید و ارائه خدمات، به زبانی ساده توضیح داده شده و نیازهای مخاطب را با پیشنهادهای اجرایی موثر برطرف میکند. خواننده محترم به یاد داشته باشد که این مطالب حاصل تیم ابزارهای کیفیت ساپکو می باشد .این تیم در سال 1378 تحت عنوان تیم SPC کار خود را در زمینه تکنیک SPC آغاز کرد.این تیم در سال 1380 با شروع کار در زمینه 3 ابزار کیفی دیگر یعنیDOE,FMEA,MSA به گروه ابزارهای کیفیت تغییر نام یافت.این تیم تاکنون بیش از 60 تجربه در برگزاری کلاس ها و کارگاه های آموزشی و 150 تجربه همکاری در اجرای ابزارهای کیفی چهارگانه یاد شده برای سازندگان مختلف ، داشته است. دراین مقاله سعی شده است تا خوانندگان عزیز با مثال های واقعی در صنعت بخصوص در صنعت خودروسازی و نیز راهنمای گام های اجرایی، گانت چارت، تمامی فرمول های مورد نیاز و چک لیست ارزیابی هر ابزار آشنا شود. فصل اول-معرفی تکنیک FMEA افزایش رقابت، افزایش توقعات و تقاضاهای مکرر مشتری و تغییرات سریع فناوری، باعث افزایش سریع تعهدات تولید کنندگان امروزی شده است.هر کمبود و انحراف در عملکرد محصول، باعث از دست دادن بازار میشود.این عوامل موجب شده که امروزه سازمان ها به استفاده از این تکنیک روی آورند تا به کمک آن مطمئن شوند محصولی بی عیب و قابل رقابت روانه بازار میکنند. اهم مطالبی که دراین فصل به اختصار توضیح داده میشوند عبارتند از: 1.معرفی تکنیک FMEA واهداف آن 2.کاربردFMEA 3.تاثیر FMEA بر نرخ خرابی محصول 4.توصیف اصول تهیه یک فرم FMEA 5.فواید FMEA 6.انواع FMEA 1-1 معرفی تکنیک FMEA و اهداف آن تعریف:FMEA متدولوژی یا روشی است سیستماتیک که به دلایل زیر به کار می رود: الف-شناسایی و اولویت بندی حالات بالقوه خرابی در یک سیستم، محصول، فرایندو یا سرویس ب-تعریف و اجرای اقداماتی به منظور حذف و یا کاهش میزان وقوع حالات بالقوه خرابی پ-ثبت نتایج تحلیل های انجام شده به منظور فراهم کردن مرجعی کامل برای حل مشکلات در آینده در دهه 1950 اهمیت مسائل ایمنی و پیشگیری از حوادث قابل پیش بینی در صنعت هوا -فضا، علت اصلی پیدایش FMEA شد. چندی بعد این روش به عنوان ابزاری کلیدی برای افزایش ایمنی رد فرایندهای صنایع شیمیایی مطرح شد واز آن به بعد، هدف از اجرای FMEA پیشگیری از تصادفات و اتفاقات تعریف شده است.در فوریه 1992 استاندارد SAE -J- 1739 به عنوان استاندارد مرجع FMEA در صنایع خودرو معرفی شد و به دنبال آن در سال های اخیر، توسعه سیستم های تضمین کیفیت در صنعت خودروبخصوص وضع استاندارد QS-9000 در صنعت خودروی امریکا، موجب شد که استفاده از FMEA رواج بیشتری یابد. FMEA تکنیکی تحلیلی و متکی بر قانون (پیشگیری قبل از وقوع) است که برای شناسایی عوامل بالقوه خرابی بکار میرود.توجه این تکنیک بر بالا بردن ضریب امنیت ودر نهایت رضایت مشتری، از طریق پیشگیری از وقوع خرابی است. FMEA ابزاری است که با کمترین ریسک، برای پیش بینی مشکلات و نقص ها در مراحل طراحی و یا توسعه فرایندها وخدمات در سازمان به کار میرود. یکی از عوامل موفقیتFMEA زمان اجرای آن است. این تکنیک برای آن طرح ریزی شده که "یک اقدام قبل از واقعه باشد" نه "یک تمرین بعد از آشکار شدن مشکلات". به بیانی دیگر، یکی از تفاوت های اساسی FMEA با سایر تکنیک های کیفی این است که FMEA یک اقدام کنشی است، نه واکنشی. در بسیاری از موارد وقتی با مشکلی مواجه می شویم، ممکن است برای حذف آن اقدامات اصلاحی تعریف و اجرا شود.این اقدامات ، واکنشی در برابر آنچه اتفاق افتاده است.درچنین مواردی حذف همیشگی مشکل، به هزینه و منابع زیاد نیاز دارد، زیرا حرکت از وضعیت موجود به سمت شرایط بهینه اینرسی زیادی خواهد داشت، اما در اجرای FMEA با پیش بینی مشکلات بالقوه و محاسبه میزان ریسک پذیری



خرید و دانلود تحقیق در مورد FMEA مفاهیم و روش پیاده سازی


تحقیق درمورد کارآموزی بررسی نقش پیاده سازی مدل EFQM در گروه خودرو سازی بهمن 107 ص

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 108

 

دانشگاه آزاد اسلامی

واحد تهران جنوب

دانشکده مدیریت و حسابداری

«پروژه کار آموزی»

(پایان نامه کارشناسی رشته مدیریت صنعتی)

موضوع :

بررسی نقش پیاده سازی مدل EFQM در گروه خودرو سازی بهمن

(مطالعه موردی : شرکت مزدا یدک)

استاد راهنما :

دکتر قنبر عباس پور اسفدن

نگارنده:

مهران حاجی ملکی

سال تحصیلی:

نیمسال دوم 88-1387

فهرست مطالب

عنوان صفحه

فصل اول : طرح تحقیق

مقدمه 2

تاریخچه 3

اهداف مدل تعالی 7

آشنایی با کلیات مدل 8

مفاهیم بنیادین تعالی 10

معیارهای مدل EFQM 19

معیارهای مدل از دید امتیاز 24

منطق امتیاز دهی RADAR 25

روشهای خود ارزیابی 28

قلمروزمانی و مکانی 32

فرضیه 32

روش تحقیق 32

محدودیت های تحقیق 32

فصل دوم : مروری بر منابع موضوع

سه فقره از مهمترین جوایز کیفیت 34

تاریخچه تکامل مدل EFQM 36

آمار سازمان های برتر جایزه تعالی 38

مدل تعالی EFQM و معیارها 42

کاربردهای مدل تعالی سازمانی 43

مزایای مدل تعالی سازمانی 43

9 معیار مدل تعالی 46

فصل سوم : روش شناسی تحقیق

فرضیه و متغیرهای تحقیق 74

روش تحقیق 74

روش های جمع آوری اطلاعات 74

جامعه و نمونه آماری 75

فصل چهارم : بحث و نتیجه گیری

اظهار نامه آموزشی 77

وضیعت گذشته 79

اعضای کمیته های مدل تعالی 81

طرح جامع IT شرکت مزدا یدک 84

نتیجه کار 99

نتیجه گیری 100

پیشنهاد 102

فهرست منابع 103

تقدیم به

روح بنیان گذار انقلاب اسلامی ایران و رهبر دلسوز حضرت آیت الله العظمی خامنه ای که زحمات بی دریغی برای به بار نشستن درخت پر شکوه انقلاب و اسلام ناب محمدی (ص) کشیده اند.



خرید و دانلود تحقیق درمورد کارآموزی بررسی نقش پیاده سازی مدل EFQM در گروه خودرو سازی بهمن  107 ص


تحقیق در مورد طراحی و پیاده سازی مدار شارژر باتری و مدار درایور موتورها (word)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

طراحی و پیاده سازی مدار شارژر باتری و مدار درایور موتورها

پیشگفتار

در این  بخش  مراحل کارهای انجام شده و طراحی های صورت گرفته برای ساخت مدارهای شارژر باتریها و درایور موتورهای dc که مورد استفاده قرار گرفته اند به اضافه مدار مولد PWM  به طور دقیق تشریح شده است.

ابتدا اجمالاً مطالبی را که در گزارشهای پیشین گفته شد مرور می کنیم- معرفی سلولهای خورشیدی و علت رواج استفاده از آن در سالهای اخیر و همچنین بلوک دیاگرام مدارهای لازم. بعد از آن به تشریح مدارات لازم و تحلیل آنها خواهیم پرداخت.

3-1- مدار شارژر باتریها

در این قسمت به تحلیل مدار شارژر باتری ها و نحوه کار آن می پردازیم. این مدار در گزارش شماره یک بررسی شده است. اما به دلیل اهمیت موضوع مجدداً به آن می پردازیم. بلوک دیاگرام مدار شارژر را در شکل زیر ملاحظه کنید.

 

بلوک دیاگرام مدار شارژر باتری

 

 

عملکرد این مدار به این صورت است که انرژی خارج شده از سوی صفحه فتو ولتاییک را رگوله کرده و به باتری می فرستد. در این سیستم یک پتانسیومتر برای کنترل جریان و ولتاژ، یک طراحی برای شارژ کردن دوره ای باتری و نیز یک خنثی کننده دما برای شارژ بهتر باتری در دماهای مختلف وجود دارد. هدف از طراحی این مدار یک کنترل کننده شارژ به منظور ساده بودن، بازدهی بالا و قابل اطمینان بودن است. یک سیستم متوسط خورشیدی قادر است که 12 ولت برق و یا جریانی در حدود 10 آمپر تولید کند. در این گونه سیستمها یک باتری اسیدی خشک نیز وجود دارد که قادر است انرژی تولید شده از صفحات را در خود نگه دارد و این در حالی است که یک باتری ممکن است که چندصد بار در طول روز شارژ و دشارژ گردد.

مدار نشان داده شده به طور کلی همانند یک سوییچ جریان عمل می کند که بین ترمینال PV و باتری قرار دارد. در این سوییچ، دیود D1 باعث جلوگیری از برگشت جریان از باتری به سلول خورشیدی می گردد. هنگامی که ولتاژ باتری از ولتاژ ماکزیمم کمتر باشد، مقایسه گر IC1a روشن می گردد و دو مقدار Q1 و Q3 را با هم مقایسه می کند که این عمل باعث می شود جریان برای شارژ به سمت باتری حرکت کند. توجه داشته باشید که Q3 یک MOSFET کانال P است که باعث می شود مدار یک زمین مشترک با باتری و صفحه داشته باشد. هنگامی که باطری به شارژ کامل رسید، IC1a همانند یک مقایسه گر و بر اساس یک Schmidt Trigger Oscilator عمل می کند. این سوییچ باعث خاموش و روشن شدن جریان سلول خورشیدی می گردد و از نوسان ولتاژ روی نقطه تنظیم باتری جلوگیری می کند. در نقطه بحرانی یک OP AMP نیاز است که به خوبی عمل کند. باید به خاطر داشته باشید که OP AMP 741 برای استفاده در این قسمت مناسب نیست و عملکرد چندان خوبی نخواهد داشت.

ترانزیستور Q1 باعث سوییچ کردن بقیه مدار می گردد؛ البته در صورتی که ولتاژ PV به قدر کافی زیاد باشد که بتواند باتری را شارژ نماید. از طرفی دیگر در شب باعث می شود که این سوییچ خاموش شود. چرا که ولتاژ کافی در دو سر صفحه وجود ندارد که بتواند باتری را شارژ نماید. در نتیجه ترانزیستور Q1 در حالت خاموش قرار دارد.

IC2 یک ولتاژ 5 ولت رگوله شده را تولید می کند تا بتواند انرژی لازم را برای مقایسه گرها فراهم نماید و به عنوان یک ولتاژ مرجع عمل می کند.

LED های قرمز و سبز که از قسمتهای IC1a و IC1b خارج می شوند، نشاندهنده عمل شارژ شدن باتری است. اگر باتری در حال شارژ شدن باشد، LED سبز، روشن خواهد شد و اگر باتری در چنین حالتی نباشد، LED قرمز، روشن خواهد شد.

پایه شماره 5 IC1b تنها به یک نقطه مرکزی نیاز دارد تا همانند یک مقایسه گر عمل کند و تنها به پایه شماره 2  IC1a‌متصل است تا نیازی به زمین نداشته باشد.

مقاومتها و مقاومتهای گرمایی توان بالا در قسمت ورودی IC1a باعث فراهم شدن یک پل می شود که برای مقایسه کردن ولتاژ باتری و ولتاژ مرجعی که از قسمت IC2، R8 و R9 می آید، به کار می رود.

 

3-2- مدار کنترل کننده موتور:]1 [  و ]2  [

تا این مرحله موفق به مهار انرژی دریافتی از سلولهای فتو ولتاییک و ذخیره آنها در باتری شده ایم. حال باید از این انرژی در راه اندازی موتورها استفاده کرد. در این پروژه از دو موتور dc استفاده شده است. علت استفاده از دو موتور به جای یک موتور، دادن امکان تغییر جهت حرکت با استفاده از تغییر جهت چرخش موتورها و یا تغییر سرعت چرخش آنها به هدایت



خرید و دانلود تحقیق در مورد طراحی و پیاده سازی مدار شارژر باتری و مدار درایور موتورها (word)