لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 9 صفحه
قسمتی از متن .doc :
عملکرد آسپرین چگونه است؟
آیا تا کنون سردرد داشته اید؟ حتماً برای شما اتفاق افتاده است، اغلب همه ما حتی یکبار تا کنون سردرد داشته ایم و داروهایی را برای بهبود سردردمان استفاده کرده ایم. این داروها به احتمال زیاد از خانواده آسپرین بوده است. همچنین ممکن است آسپرین یا وابستگانش را برای ناراحتی های دیگری مثل التهاب (ورم مفاصل یا بخشهای دیگر بدن) و تب استفاده کرده باشید. آیا می دانید که حدود 80 بیلیون قرص آسپرین هر ساله برای این ناراحتی ها و همین طور ناراحتی های زیاد دیگری خورده می شود؟ برای مثال میلیونها انسان آسپرین را برای کمک به پیشگیری از حمله های قلبی می خورند! یک دکتر دلایل خوبی داشته که می گفته” خوردن دو آسپرین و خوابیدن من تا صبح“! در این مقاله، دکتر لوک هوفمن اثرات آسپرین را می شناساند. شما در مورد فواید زیاد آسپرین و همچنین برخی دلایل منع خوردن این دارو را فرا می گیرید.شما همچنین می فهمید که چرا باید آن را آسپرین ”داروی شگفت انگیزی که شگفت انگیز عمل می کند“ نامید.
آسپرین چه می کند؟
آسپرین ناراحتی ها را از طریق توقف سلولها با ساخت پروستاگلاندین ها بهبود می بخشد.
آیا می دانید آنزیم COX-2 چیست؟ COX-2 پروتئینی است که توسط سلولهای بدن ساخته می شود و کارش این است که شناورهای شیمیایی را اطراف سلولها می برد و پروستاگلاندین ها را دگرگون می کند. COX-2 را در بسیاری از بافت های معمولی می توان یافت، اما بیشتر در بافتهایی که از چند جا صدمه دیده باشند دیده می شود.
در نتیجه آسپرین به COX-2 می چسبد و اجازه انجام فعالیت هایش را نمی دهد. آسپرین شبیه قفلی است که به دوچرخه تان می زنید؛ دوچرخه با قفل رویش حرکت نخواهد کرد و COX-2 هم با آسپرین چسبیده به آن نمی تواند عمل کند. بنابراین با خوردن آسپرین علت ناراحتی هایی مثل گرفتگی عضلات شکم یا استخوان آسیب دیده انگشت که باعث درد شده، از بین نمی رود، اما آسپرین کم کننده نشانه های دردی است که در اعصابتان بوجود آمده است.
یک سؤال معمول در مورد آسپرین و داروهای دیگر است که ” چگونه آسپرین محلی که درد می کند را می شناسد یا تشخیص می دهد؟ “ جواب اینکه محل آن را نمی شناسد! زمانی که آسپرین خورده می شود در معده یا دیگر راههای گوارشی، روده باریک و غدد بدن هضم می شود. سپس به جریان خون و بعد به تمام بدن می رود. با اینکه آسپرین در هر جایی از بدن وجود دارد، اما تنها در جاهایی که پروستاگلاندین ها تولید شده است یعنی همان نواحی آسیب دیده، عمل می کند.
شما ممکن است بپرسید ” هر چند ساعت آسپرین بخورم تا اثر آسپرین های خورده شده بخوبی حفظ شود؟ “
بدنتان در مورد غالب مواد شیمیایی از جمله آسپرین راههایی برای دفع آنها دارد. در این نمونه، کبد، معده و دیگر اندام هایتان آسپرین را تغییر می دهد به ... عجیب است! اسید سالیسیلاک! سپس این ماده شیمیایی به آرامی توسط کبد ریزتر می شود و همراه مواد شیمیایی دیگر روی اسید سالیسیلاک می چسبند. همین طور کلیه هاتان می تواند آن را به بیرون از خون برده و از طریق ادرارتان دفع کند. این مراحل تا دفع آسپرین 4 تا 6 ساعت طول می کشد. بنابراین شما نیاز دارید تا آسپرین دیگری بعد از 6ساعت بخورید تا اثر آن حفظ شود.
نکته اینکه آسپرین به تمام جریان خون می رود و بدن پروستاگلاندین ها را به چند دلیل نیاز دارد.
پروستاگلاندین ها برای معده مفید هستند چون آنزیم دیگری به نام cox-1 پروستاگلاندینی می سازد که به نظر می رسد جدار معده را مطلوب و محکم حفظ می کند. آسپرین از عملکرد cox-1 جلوگیری می کند ( آسپرین بطور غیر انتخابی از تولید کافی بیشترین پروستاگلاندین ها جلوگیری می کند.) بنابراین جدار معده نازک شده و شیره گوارشی جدار معده را می سوزاند. این محتمل ترین دلیلی است که چرا آسپرین و وابستگانش معده را ناراحت می کند (همان طور که هوفمن بیان کرده علی رغم اینکه آسپرین یک نوع اسید هم هست) .
همچنین cox-2 در چند بافت دیگر مانند مغز وکلیه عمل می کند؛ مقادیر معمولی داروی آسپرین احتمالاً بر روی این نواحی اثر زیادی نمی گذارد.
در محلهای دیگری مانند خون پروستاگلاندین ها اعمالی را انجام می دهند که آسپرین مانع چنین اعمالی نیز می شود.
تحقیقات جدید نشان می دهد که مصرف آسپرین در مردان باعث درمان مشکلات مربوط به مثانه و مانع بزرگ شدن پروستات می شود. به نقل از بی بی سی: استفاده از آسپرین و ایبوپروفن روند بزرگ شدن پروستات در مردان را کاهش می دهد. به وجود آمدن مشکل در تخلیه مثانه یکی از نشانه های بزگر شدن پروستات است
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 28 صفحه
قسمتی از متن .doc :
یک نانومتر چقدر است؟
یک نانومتر یک میلیاردم متر (10-9 m) است. این مقدار حدودا چهار برابر قطر یک اتم است. مکعبی با ابعاد 2.5 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین آی سیهای امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم ، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازهای حدود 10 نانومتر ، هزار برابر کوچکتر از قطر یک موی انسان است.امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن (R.Feynnman) ، برنده جایزه نوبل فیزیک مطرح شد. فاینمن طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیزها را رد نمیکند. وی اظهار داشت که میتوان با استفاده از ماشینهای کوچک ماشینهایی به مراتب کوچکتر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد.همین عبارتهای افسانه وار فاینمن راهگشای یکی از جذابترین زمینههای نانو تکنولوژی یعنی ساخت روباتهایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانو ماشینهایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکزی هستند، هر دانشمندی را به وجد میآورد. در رویای دانشمندانی مثل جی استورس هال (J.Storrs Hall) و اریک درکسلر (E.Drexler) این روباتها یا ماشینهای مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی در میآیند. شاید در آیندهای نه چندان دور بتوانید به کمک اجرای برنامه ای در کامپیوتر ، تخت خوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.
چرا این مقیاس طول اینقدر مهم است؟
خواص موجی شکل (مکانیک کوانتومی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر میپذیرند. با تولید ساختارهایی در مقیاس نانومتر ، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب ، خواص مغناطیسی ، ظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود میآید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارآیی بالا منتهی میشود که پیش از این میسر نبود.نظام سیستماتیک ماده در مقیاس نانومتری ، کلیدی برای سیستمهای بیولوژیکی است. نانوتکنولوژی به ما اجازه میدهد تا اجزاء و ترکیبات را داخل سلولها قرار داده و مواد جدیدی را با استفاده از روشهای جدید خود_اسمبلی بسازیم. در روش خود_اسمبلی به هیچ روبات یا ابزار دیگری برای سرهم کردن اجزاء نیازی نیست. این ترکیب پر قدرت علم مواد و بیوتکنولوژی به فرآیندها و صنایع جدیدی منتهی خواهد شد.ساختارهایی در مقیاس نانو مانند نانو ذرات و نانولایهها دارای نسبت سطح به حجم بالایی هستند که آنها را برای استفاده در مواد کامپوزیت ، واکنشهای شیمیایی ، تهیه دارو و ذخیره انرژی ایدهال میسازد. سرامیکهای نانوساختاری غالبا سختتر و غیرشکنندهتر از مشابه مقیاس میکرونی خود هستند. کاتالیزورهای مقیاس نانو راندمان واکنشهای شیمیایی و احتراق را افزایش داده و به میزان چشمگیری از مواد زائد و آلودگی آن کم میکنند. وسایل الکترونیکی جدید ، مدارهای کوچکتر و سریعتر و … با مصرف خیلی کمتر میتوانند با کنترل واکنشها در نانوساختار بطور همزمان بدست آیند. اینها تنها اندکی از فواید و مزایای تهیه مواد در مقیاس نانومتر است.
منافع نانوتکنولوژی چیست؟
مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمدهاند، شیشههایی که خودبه خود تمیز میشوند، مواد دارویی که در مقیاس نانو ذرات درست شدهاند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها ، هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایهها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و ... .
قابلیتهای محتمل تکنیکی نانوتکنولوژی
محصولات خود_اسمبل
کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
اختراعات بسیار جدید (که امروزه ناممکن است)
سفرهای فضایی امن و مقرون به صرفه
نانوتکنولوژی پزشکی که در واقع باعث ختم تقریبی بیماریها ، سالخوردگی و مرگ و میر خواهد شد.
دستیابی به تحصیلات عالی برای همه بچههای دنیا
احیاء و سازماندهی اراضی
برخی کاربردها
مدلسازی مولکولی و نانوتکنولوژی
در سازمان دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل سازی مولکولی و شبیه سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America میگوید:"روشهای تجربی مستلزم بهرهگیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا میسازد که فعالیتهای شیمیایی چندگانهای را در 24 ساعت شبانه روز انجام دهد. شیمیدانها میتوانند با انجام آزمایشها توسط رایانه ، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.نتیجه نهایی این امر ، کاهش اساسی در هزینههای آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه گذاری اولیه جهت تهیه نرمافزار و هزینههای وابسته از جمله سختافزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار میتوان هریک از هزینههای اولیه را نه تنها از طریق صرفهجویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه سازی فرآیندها و عملکردها میشود، جبران ساخت.این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیهسازی چطور میتوانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار میشود که شگفتی جهان دانشمندان نظری وارد عمل میشود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه میشود. پیشبینی رفتار و خواص در محدودهای از ابعاد برای نانوتکنولوژیستها حیاتی است.مدلسازی رایانهای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیهسازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیشبینی رفتار در مقیاس نانو و یا حدود آن قادر میسازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها میپردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیهسازی مولکولی عمل میکنند. میتوان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساختهشده در مقیاس نانو و میکرو بکار برد.
مدل سازی خاک رس
محققین دانشگاه لندن در انگلستان و دانشگاه Paris Sud در فرانسه ، شبیهسازیهایی بر اساس مکانیک کوانتوم برای مطالعه و کامپوزیتهای خاک رس–پلیمر بکار بردهاند. امروزه این ترکیبات یکی از موفقترین مواد نانوتکنولوژی هستند، زیرا بطور همزمان مقاومت بالا و شکلپذیری از خود نشان میدهند؛ خواصی که معمولاً در یکجا جمع نمیشوند. نانو کامپوزیتهای پلیمر–خاک رس میتوانند با پلیمریزاسیون در جا تهیه شوند؛ فرآیندی که شامل مخلوط کردن مکانیکی خاک معدنی با مونومر مورد نیاز است. بنابراین مونومر در لایه درونی جایگذاری میشود (خودش را در لایههای درون ورقههای سفال جای میدهد) و تورق کل ساختار را افزایش میدهد. پلیمریزاسیون ادامه مییابد تا سبب پیدایش مواد پلیمری خطی و همبسته گردد.
دانشمندان با بکارگیری Castep (یک برنامه مکانیک کوانتوم که نظریه کارکردی چگالی را بکار میگیرد) تحول کشف شده در این روش را که پلیمریزاسیون میان گذار خود کاتالیست نامیده میشود مطالعه کردند. این پروژه ، دانشی نظری در زمینه ساز و کار این فرآیند جدید را بوسیله مشخص کردن نقش سفال در کامپوزیت فراهم نمود. ضروری است که دانش حاصل از شبیهسازیها ، جهت کنترل و مهندسی نمودن فعل و انفعالات پلیمر-سیلیکات به کمک دانشمندان آید.دانشمندان در شرکت BASF شبیه سازیهای مقیاس میانی را برای بررسی علم و رفتار ریزوارهها بکاربردند. ریزوارهها ذراتی کروی شکل با ابعاد نانو هستند که به صورت خود به خود در محلولهای کوپلیمری ایجاد میشوند و در زمینههایی مانند سنسورها وسایل آرایشی و دارو رسانی کاربرد دارند. دانشمندانBASF با بکار گیری esoDyn ، یک ابزار شبیه سازی برای پیشبینی ساختارهای مقیاس میانی مواد متراکم محلولهای تغلیظ شده کوپلیمرهای آمفیفیلیک را بررسی کردند.شبیهسازیها مشخص نمود که کدام شرایط مولکولی و فرمولی به شکلگیری "ریزوارههای معکوس" مانند نانو ذرات آب در یک محیط فعال منتهی میشود. چنین نتایجی برای درک رفتار عوامل فعال سطحی ضروری هستند. به کمک روشهایی مانند پرتاب محلول در آزمایشگاه میتوان به نتایجی در این زمینه دست یافت، اما دستیابی به این نتایج ماهها به طول میانجامد، درحالی که آزمایشهای شبیهسازی شده تنها طی چند روز نتیجه میدهند.
محدودیتهای این روشها چیست؟
در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافتهاند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر میباشد که بیش از توان عملیاتی منابع محاسبهگر فعلی است. همچنین مدلسازی کل وسایل امکانپذیر نیست، بویژهفن آوری و نانو تکنولوژی
فصل چهارم معرفی نانوفناوری و کاربردهای آن
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 101
XML چیست و چرا دارای اهمیت فراوان است ؟
تاکنون مقالات فراوانی در باره XML نوشته شده است، اغلب مطالب عنوان شده صرفا" بر روی یک موضوع خاص تمرکز داشته و از زاویه ای کاملا" اختصاصی و در عین حال محدود به بررسی تکنولوژی XML پرداخته و بندرت به موارد اساسی و خانواده بزرگ استاندارهای XML اشاره شده است. در این مقاله عناصر کلیدی مرتبط با تکنولوژی XML تشریح و ارتباط آنها تبین و جایگاه هر یک از آنها برای پیاده کنندگان و طراحان برنامه های اطلاعاتی تشریح می گردد. پس از مطالعه این مقاله ، خوانندگان با استانداردهای کلیدی : XML,XSL,XML-Schema,DOM,SAX,Namespace,XLink بهمراه تکنولوژی های مربوطه آشنا خواهند شد. تعریف اصطلاحات و واژه ها در ابتدا لازم است با کلمات تشکیل دهنده XML یعنی Extensible ، Markup و Language آشنا شویم .Markup ، واژه ئی برای متادیتا است . متادیتا ، اطلاعاتی در رابطه با اطلاعات است . قدمت استفاده از Markup به قبل از کامپیوتر بر می گردد . مثلا" در دنیای نشر از علائم خاصی در متن های ویرایش شده استفاده تا به پردازنده متن ( انسان و یا ماشین ) اعلام شود ، چه نوع عملیاتی را در رابطه با اطلاعات می بایست انجام دهد. HTML یکی از زبان های کلاسیک نشانه گذاری است . مثلا" با افزودن تگ به مرورگر اعلام می شود که به چه صورت می بایست اطلاعات نمایش داده شوند . زبان (Language) ، به مجموعه ای از کلمات معنی دار و با مفهوم که عده ای از آنها برای بیان خواسته ها ی خود استفاده می نمایند ،اطلاق می گردد . ( مثلا" زبان فارسی و یا انگلیسی ) با کنار هم قرار دادن دو واژه اشاره شده ، با زبان نشانه گذاری مواجه خواهیم شد . زبان نشانه گذاری ، به مجموعه ای از کلمات معنی دار و با مفهوم که توسط عده ای (با آگاهی لازم انتخاب ) استفاده می گردد ، اطلاق می گردد. HTML ، نمونه ای مناسب در این زمینه است . تمام افرادی که از تگ های HTML استفاده می نمایند ، بدرستی نسبت به مفهوم و جایگاه هر یک از تگ ها آشنائی داشته و با آگاهی کامل آنها را برای بیان خواسته های خود استفاده می نمایند. مثلا" مشخص است که استفاده از تگ
چه نوع پیامدهائی را بدنبال خواهد داشت . تگ فوق ، توسط مولفین صفحات وب آگاهانه انتخاب می گردد و مرورگرها نیز متناسب با تعاریف از قبل مشخص شده ، واکنش مناسب خود را در رابطه با نحوه نمایش انجام خواهند داد. یک زبان بسط پذیر(Extensible) ، زبانی است که دارای مکانیزم لازم برای افزودن کلمات بگونه ای است که توسط سایر استفاده کنندگان نیز قابل فهم باشد . در دنیای واقعی و در ارتباط با زبان های طبیعی ما هرگز شاهد چنین وضعیتی نخواهیم بود . ( افزودن یک واژه با معنی مورد نظر خود و استفاده از واژه با همان معنی توسط سایر استفاده کنندگان ) با توجه به تعاریف ارائه شده ، یک زبان نشانه گذاری بسط پذیر ، می بایست یک زبان نشانه گذاری با قابلیت افزودن کلماتی بیشتر باشد . در عمل زبان نشانه گذاری بسط پذیر ، به سیستمی برای تعریف تمام زبا ن های نشانه گذاری با قابلیت توسعه وضعیت موجود ، اطلاق می گردد . SGML HTML و XML SGML)Standard Generalize Markup Language) سرچشمه XML بوده و در سال 1988 استاندارد شده است . HTML)HyperText Markup Language) زبانی است که در ابتدا با استفاده از SGML تعریف گردید. HTML یک زبان نشانه گذاری است ، بنابراین انتظار داریم شامل مجموعه ای از تگ ها بمنظور کنترل قالب و رفتار اطلاعات در مستندات باشد . XML ، یک زبان نشانه گذاری مشابه HTML نمی باشد . XML ، زیرمجموعه ای از SGML است ( مکانیزمی برای تعریف زبان های نشانه گذاری ) . XML همانند SGML یک زبان نشانه گذاری بسط پذیر بوده اما بر خلاف SGML برای استفاده بر روی وب بهینه شده است . مفاهیم اساسی لازم است که مجددا" به این نکته مهم اشاره گردد که XML ، یک زبان نشانه گذاری نبوده و در مقابل مکانیزمی برای ایجاد زبان های نشانه گذاری اختصاصی است . XML ، شامل مجموعه ای از استانداردها ی متنوع با کاربردهای خاص است . XML ، یک زبان نشانه گذاری نبوده و در عین حال یک زبان برنامه نویسی هم نیست . از XML برای ارائه اطلاعات استفاده شده و بمنظور پردازش اطلاعات، می بایست برنامه هائی نوشته گردد . از XML در موارد زیر می توان استفاده کرد :● مبادله اطلاعات بین برنامه های نامتجانس ، بنگاه های تجاری و بانک های اطلاعاتی ● امکان فعال نمودن مدلی برای نمایش اطلاعات یکسان بر روی دستگاههای متفاوت با اهداف و خوانندگان گوناگون ● یک قالب ذخیره سازی مناسب برای داده هااستانداردهای خانواده بزرگ XML از واژه XML اغلب برای بیان یک استاندارد بین المللی استفاده می گردد . در برخی حالات واژه فوق برای بیان تمام استانداردهای مرتبط با XML نیز استفاده می گردد . اکثر کاربران با استانداردهای XML سرو کار ندارند. استانداردهای موجود اغلب توسط افرادیکه نرم افزار تولید و یا بر روی سندهای XML پردازشی را انجام می دهند ، استفاده می گردد . شناخت استانداردهای موجود در این زمینه مهم بوده و لازم است با جایگاه هر یک آشنا شویم . یکی از روش هائی که می توان استانداردهای موجود را بدرستی سازماندهی و بخاطر سپرد ، توجه و تمرکز بر اهدافی است که آنها دنبال می نمایند. جدول زیر استانداردهای موجود بهمراه اهداف و قابلیت های هر یک را نشان می دهد.
امکانات موجود
هدف
XMLNamespacesXML-Schemas
تعریف یک زبان XML
CSS (Cascading Style Sheets)XSL (Extensible Style Language)XSLT (XSL Transformations)
فرمت و نمایش سندهای XML
DOM (Document Object Model)SAX (Simple API for XML)XSLT
پیاده سازی برنامه
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 6
در ریاضیات ، تابعرابطهای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعهای دیگر (شاید یک عضو از مجموعه) را بیان میکند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخههای ریاضی به حساب میآید.
مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابهای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل میشوند.
تعریف تابع
در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید میکند معکوس این مطلب را در تعریف تابع بکار نمیبرند یعنی در واقع یک تابع میتواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولیدکند. برای مثال با فرض y=x2 باورودیهای 5- و 5 خروجی یکسان 25 راخواهیم داشت. در بیان ریاضی تابع رابطهای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
به عنوان مثال تابع f(x)=x2 بیان میکند که ارزش تابع برابر است با مربع هر عددی مانند X
در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی میکنند.
ا این شرط که هرگاه دو زوج با مولفههای اول یکسان در این رابطه موجود باشند آنگاه مولفههای دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه مینامند. مفهوم تابع اساسی اکثر شاخههای ریاضی و علوم محاسباتی میباشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.
فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد میشود در چنین حالتی تابع را میتوان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید میکند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را میتوان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره میبرند.
تاریخچه تابع
نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.
چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعهها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدیها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر میگیرند ولی در بعضی جاها y,x را عوض میکنند.
ورودی تابع
ورودی یک تابع را اغلب بوسیله x نمایش میدهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش میدهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر میکند بکار میرود. واژه قدیمی آرگومان قبلا به جای ورودی بکار میرفت. همچنین خروجی یک تابع را اغلب با y نمایش میدهند در بیشتر موارد به جای f(x) , y گفته میشود. به جای خروجی تابع نیز کلمه مقدار تابع بکار میرود. خروجی تابع اغلب با y نمایش داده میشود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش میدهیم. (W = f(z
تعریف روی مجموعهها
یک تابع رابطهای منحصر به فرد است که یک عضو از مجموعهای را با اعضای مجموعهای دیگر مرتبط میکند. تمام روابط موجود بین دو مجموعه نمیتواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر میکنیم:
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 19
فیزیک پلاسما از شاخههای فیزیک است که به بررسی یکی از اشکال وجود ماده یعنی پلاسما میپردازد.
از انجا که بخش بزرگی از جرم قابل مشاهدهٔ عالم، ستارگان با دماهای بسیار زیاد هستند، امکان وجود ماده به صورتهای جامد و مایع در این اجرام منتفی است. از سوی دیگر گاز نیز، به دلیل این حرارت بسیار زیاد، تبدیل به یک توده یونیزه شده و به صورت مخلوطی از یونهای مثبت(هسته اتم ها) یونهای منفی (الکترون ها) و ذرات خنثی در میاید.
در این توده، به دلیل وجود نیروهای الکتریکی که بسیار قوی تر از نیروی گرانشی است ذرات بر روی هم تأثیر زیادی میگذارند. به طوری که حرکت بخشی از این توده، باعث تغییر در وضعیت حرکت و انرژیِ بخشهای دیگر میشود که به این پدیده، اثر جمعی گفته شده، و هر گاه گاز به شدت یونیزه شده دارای این خاصیت باشد، پلاسما نامیده میشود و این بدین معنی است که بخش غالب ماده قابل مشاهده جهان، پلاسما است.
جالب این است که پلاسما ممکن است درعین حال دارای چندین دماباشد که این حالت باتوجه به اینکه میزان برخوردبین خود یونها یا خود الکترونها از میزان برخوردهای بین یک یون و یک الکترون بیشتراست میتواند پیش بیاید.
چند مورد از پلاسما که ما روزانه باآن سروکار داریم عبارت است از: جرقه رعدوبرق، تابش ملایم شفق قطبی، گازهادی داخل یک لامپ فلورسنت، چراغ نئون و یونش مختصری که در گازهای خروجی موشک دیده میشود.
پلاسما، امروزه نقش مهمی در توسعهٔ منابع انرژی، از راه همجوشی هستهای یافته است.
پلاسما گاز شبه خنثایی از ذرات باردار و خنثی است که رفتار جمعی از خود ارائه میدهد. به عبارت دیگر میتوان گفت که واژه پلاسما به گاز یونیدهشدهای اطلاق میشود که همه یا بخش قابل توجهی از اتمهای آن یک یا چند الکترون از دست داده و به یونهای مثبت تبدیل شده باشند. یا به گاز به شدت یونیزه شدهای که تعداد الکترونهای آزاد آن تقریبا برابر با تعداد یونهای مثبت آن باشد، پلاسما گفته میشود.
پلاسمای طبیعی
عموما پلاسما را مجموعهای از یونها ، الکترونها و اتمهای خنثی جدا از هم و تقریبا در حال تعادل مکانیکی ـ الکتریکی میگویند. حالتهای خاصی را در مقابل مغناطیس نشان میدهد. این رفتارها کاملا برعکس رفتار گازها در مقابل میدان مغناطیسی است. زیرا گازها به سبب خنثی بودنشان از لحاظ بار الکتریکی توانایی عکس العمل در مقابل مغناطیس و میدان وابسته به آن را ندارند.
در کنار این رفتار پلاسما میتواند تحت تاثیر میدان مغناطیسی درونی که از حرکت یونهای داخلی به عمل میآید قرار گیرد. همچنین پلاسما بعلت رفتار جمعیتی که از خود نشان میدهد، گرایشی به متاثر شدن در اثر عوامل خارجی ندارد. و اغلب طوری رفتار میکند که گویی دارای رفتار مخصوص به خودش است. معیار دیگر برای پلاسما آن است که فراوانی بارهای مثبت و منفی باید چندان زیاد نباشد که هر گونه عدم توازن موضعی بین غلظتهای این بارها غیر ممکن باشد.
مثلا بار مثبت به سرعت بارهای منفی را به سوی خود میکشد تا توازن بار از نوع برقرار سازد. بنابراین اگرچه پلاسما به مقدار زیادی بار آزاد دارد، ولی از لحاظ بار الکتریکی خنثی است. ماده در حالت پلاسما نسبت به حالتهای جامد ، مایع و گاز نظم کمتری دارد. با این حال خنثی بودن الکتریکی پلاسما بطور متوسط انرژی از نظم را نشان میدهد
چهارمین حالت ماده کدام است؟
اگر پلاسما تا دمای زیاد حرارت داده شود، نظم موجود در پلاسما از بین میرود و ماده به توده درهم و برهم و کاملا نامنظم ذرات منفرد تبدیل میشود. بنابراین پلاسما گاهی نظیر سیارات ، رفتاری جمعی و گاهی نظیر ذرات منفرد ، بصورت کاملا تکی عمل میکند. بدلیل همین رفتارهای عجیب و غریب است که غالبا پلاسما در کنار گازها و مایعات و جامدات ، چهارمین حالت ماده معرفی میشود. بنابراین با توجه به اینکه چگالی پلاسما قابل توجه میباشد. مدولانک در تک ذرات منفرد به مشکلات رفتار پلاسما افزوده میشود
ضرورت بررسی پلاسمای طبیعی
با وجود این پیچیدگیها با عنایت به اینکه 99 درصد ماده موجود در طبیعت و جهان در حالت پلاسما است. علاقمندی ما به پلاسما جدا از بسیاری کاربردها نظیر تولید انرژی ، عدسی پلاسمایی برای کانونش انرژی و ... معتدل میباشد، چرا که از ترک زمین ، با انواع پلاسماها مانند «یونسفر ، کمربندها و بادهای خورشیدی) مواجه میشویم. بنابراین فیزیک پلاسما نیز در کنار سایر شاخههای علوم فیزیکی ، در شناخت محیط زندگی ما در قالب رشته ژئوفیزیک از یک اهمیت زیادی برخوردار است
انواع پلاسما
پلاسمای جو
نزدیکترین پلاسما به ما «کره زمین) ، یونوسفر
(Ionosphere)
میباشد که از صد و پنجاه کیلومتری سطح زمین شروع و به طرف بالا ادامه مییابد. لایههای بالاتر یونسفر ، فیزیک سیستمها به فرم پلاسما می باشند که توسط تابش موج کوتاه در حوزه وسیعی ، از طیف اشعه فرابنفش گرفته تا پرتوهای ایکس و همچنین بوسیله پرتوهای کیهانی و الکترونهایی که به گلنونسفر اصابت میکنند یونیزه میشوند
شفق قطبی
پدیده شفق نیز نوعی پلاسما است که تحت اثر یونیزاسیون ایجاد میشود. یونسفر پلاسمایی با جذب پرتوهای ایکس ، فرابنفش ، تابش خورشیدی ، انعکاس امواج کوتاه و رادیویی اهمیت اساسی در ارتباط رادیویی در سرتاسر جهان دارد. با همه این احوال نه تنها زمین بلکه زهر و مریخ نیز فضایی یونسفری دارند
ملاحظات نظری نشان میدهد که در سایر سیارههای منظومه شمسی نظیر مشتری ، زحل ، اورانوس ، نپتون نیز باید یونسفرهای قابل مشاهده وجود داشته باشد. فضای بین سیارهای نیز از پلاسمای بین سیارهای در حال انبساط پر شده که محتوای یک میدان مغناطیسی ضعیف (حدود -510 تسلا) است
هستههای ستارگان دنباله دار نیز به فضای بین پلاسمایی پرتاب میکند. از طرف دیگر ، خورشید منظومه شمسی مانند یک کره پلاسمایی است. درخشندگی شدید خورشید ، معمولا عین یک درخشندگی پلاسمایی میباشد. خورشید به سه قشر گازی فتوسفر ـ کروموسفر و کورونا (که کرونای آن بیش از یک میلیون درجه ، حرارت دارد) احاطه شده است و انتظار میرود که هزارها سال به درخشندگی خود ادامه بدهد
کاربرد پلاسمای یونسفر
یونوسفر زمین در ارتباطات رادیویی اهمیت زیادی دارد. توضیح این نکته لازم است که یونوسفر ، امواج رادیویی با فرکانسهای بیش از 30 مگاهرتز (بین امواج رادار و تلویزیون) را عبور میدهد. ولی امواج با فرکانسهای کمتر (کوتاه ، متوسط و بلند رادیویی) را منعکس می کند. همچنین شایان ذکر است که ضخامت یونسفر زمین که از چند لایه منعکس کننده تشکیل شده است با عواملی نظیر شب و روز آشفتگی پلاسمایی سطح خورشید در ارتباط نزدیک میباشد
مگنتوسفر و کمربندهای تشعشعی زمین
میدانیم زمین ما دارای میدان مغناطیسی است که میتواند بر یونها و به طور خلاصه پلاسمای فضای اطرافش اثر بگذراد. بر طبق نظرات دینامو ، میدان مغناطیسی زمین از القای مغناطیس حاصل از حرکات ذرات داخل پلاسمای فضا به درون زمین متاثر میشود. که دوباره نقش فیزیک پلاسما را در ژئوفیزیک یادآوری میکند. به هرحال بطور نظری باید میدان مغناطیسی به شکل متقارن باشد لیکن فشار باد خورشیدی ، میدان ژئومغناطیس زمین را به صورت ستارگان دنبالهدار یا دکلی شکل در میآورد. که در اصطلاح به آن مگنتوسفر زمین گفته میشود. ساختمان این لایه پلاسمایی نیز خود از چند لایه تشکیل شده است.
ژئوفیزیکدانان با مطالعه اساسی این لایهها ، حد بالای آن را که حدودا 10 برابر شعاع زمین و در جهت خورشید میباشد، مغناطیس سکون مینامند. خارج از مغناطیس سکون ، ناحیه متلاطمی است که «غلاف» مغناطیس نام دارد و آن باد خورشیدی در نتیجه فشار مگنتوسفر جهت و سرعت خود را تغییر میدهد. مگنتوسفر زمین ، کمربند ایمنی زمین در مقابل ذرات خطرناک کم انرژی و حتی متوسط انرژی میباشد. به این کمربند حافظ امنیت زمین در مقابل اشعههای خطرناک و ذرات ساتع از خورشید ، اصطلاحا کمربندهای وان آلن (به افتخار کاشف این کمربندها) گفته میشود
آینههای مغناطیسی
با توجه به تاثیرات میدان مغناطیسی زمین بر روی پلاسما ، ذراتی که در میدان مغناطیسی زمین (کمربند وان آلن) گیر می اندازد. به واسطه داشتن میدان مغناطیسی قوی و ضعیف و در قطبین زمین حرکتی انجام میدهند که به مثابه یک آینه طبیعی میباشد. بنابراین آینه مغناطیسی که قبلا برای اولین بار توسط انریکو فرمی به عنوان مکانیسمی برای شتابدار ساختن پرتوی کیهانی استفاده شده بود، در ژئوفیزیک نیز به کار رفت
بادهای خورشیدی
خورشید منظومه شمسی منبع نیرومندی از جریان مداوم پلاسما به صورت باد خورشیدی است. باد خورشیدی اصطلاحی برای ذرات تشعشع یافته نظیر بادهایی در حدود 100 هزار درجه کلوین است. باد خورشیدی پدیده پیچیدهای است که سرعت و چگالی آن متغیر میباشد. متغیر بودن پلاسمای بادی به