واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

واضی فایل

دانلود کتاب، جزوه، تحقیق | مرجع دانشجویی

مقاله درمورد ریاضیات و نجوم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

در آمد ریاضی ها"ریاضیات و نجوم ارتباط بسیار نزدیکی در قرون مختلف تا به حال داشته اند.که البته نجوم بسیاری از مکشوفاتش را مدیون حمایتهای رابطه های ریاضی است.در این مقاله ی کلان، به این مهم پرداخته شده است."رصدخانه ای که مامون ضمیمه بیت الحکمه کرد، مرکزی شد برای مطالعه در نجوم و ریاضیات.در این رصدخانه مسلمین محاسبات مهم نجومی انجام دیدند چنانکه طول یک درجه از نصف النهار را با دقتی نزدیک به حاسبات ریاضی امروز اندازه گرفتند.تفصیل طرز عمل و محاسبه را ابن خلکان در شرح حال محمد بن موسی خوارزمی نقل میکند.ارقام معروف هندی از همین ایام نزد مسلمین متداول شد و ظاهرا" ترجمه کتاب نجومی سدهانته معروف به سندهند از سنسکریت به عربی که بوسیله ی محمد بن ابراهیم فزاری انجام شد و همچنین کارهای خوارزمی از اسباب رواج این ارقام شد، چنانکه جنب و جوش بازرگانی مسلمین و وسعت دامنه تجارت آنها بعدها موجب انتشار استعمال این نوع ارقام در اروپا شد.

در نجوم مطالع مسلمین مخصوصا" ارزنده بود.مطالعات بابلیها، هندوان و ایرانیان که به آنها رسید از اسباب عمده  (Albumasar) می خوانده اند: مجموعه در پیشرفت آنها: ابو معشر بلخی که اروپائیها در قرون وسطی وی را بنام زیجاتی داشت که در آن حرکات سیارات از روی طریقه هندی و رصد گنگ دز محاسبه شده بود و اگر چه اصل آن نمانده است اما آثار دیگر او از خیلی قدیم به زبان لاتینی ترجمه و مکرر چاپ شده است و اینهمه او را در نجوم در تمام قرون وسطی شهرت جهانی بخشید.با اینهمه، وی روی هم رفته به عنوان یک منجم بیشتر اهمیت دارد تا بعنوان یک عالم نجوم.از اینها گذشته، تجارب و اطلاعات صائبین نیز در پیشرفت نجوم اسلام تاثیر بسیار داشت.پابت ابن قره- که به هندسه و فیزیک علاقه داشت، در تحقیق طول سال شمسی و درجه آفتاب  مطالعات مهمی کرد.بتانی که نیز از میراث صائبین بهره داشت با تالیف زیجی در بسط هیئت و نجوم اسلامی تاثیر قابل ملاحظه ای داشت.وی حرکت نقطه اوج آفتاب را کشف کرد و بعضی اقول بطلیموس را در این باب نقد نمود.ملاحظات او در باب خسوف در محاسباتی که دانتورن (Dunthorn) از علماء قرن هجدهم اروپا کرد به عنوان یک راهنما یا محرک تلقی شد.نیز وی برای مسائل مربوط به مثلثات کروی راه حلهایی یافت که رجیومانتس (متوفی 1476) از آنها استفاده کرد.

سه شاهکار نجومی مسلمین در این زمینه به عقیده ی سارتون، یکی صور الکوکب عبد الرحمن صوفی است ( متوفی 376 ) دیگر زیج ابن یونس(متوفی 399) است که شاید بزرگترین منجمین اسلام باشد و چون وی آن را بنام احاکم بامرالله خلیفه فاطمی مصر ساخت زیج حاکمی خوانده می شود.سومین شاهکار نجومی عبارتست از زیج الغ بیگ که با همکاری امثال قاضی زاده رومی و غیاث الدین جمشید کاشانی تدوین شد اما قتل الغ بیگ مطالعات جدی مربوط به نجوم را در شرق در واقع پایان داد.ازجمله اقدامات علمی مسلمین در امور مربوط به ریاضی نجوم اصلاح  تقویم بود.در عهد جلال الدوله  ملکشاه سلجوقی که گویند عمر خیام هم با منجمین دیگر در این اصلاح همکاری داشت و تقویم جلالی که بدینگونه بوجود آمد از بعضی تقویم های مشابه که در اروپا بوجود آمد دقیقتر و شاید علمی تر بود.خواجه نصیر طوسی قطع نظر از تحریر اقلیدس و مطالعات راجع به مثلثات که آن را از گرو نجوم بیرون آورد و مستقل ساخت.در کتاب تذکره، هیئت بطلیموسی را به شدت انتقاد نمود و خود نظریات بدیعی پیشنهاد داد.اثبات و طرح عیوب

سیستم بطلیموس به ضرورت اظهار طرح تازه ای که بعدها بوسیله ی کوپرنیک عرضه شد، کمک کرد.

کوتاه در مورد مایاها

در میان بناهای باشکوه " مایا "ها در " په لنگ " و شهر" چیکن ایتزا " نقوش حجاری شده بسیاری بر تخت سنگها و دیوارها بچشم میخورد – اما سرامد تمام انها تابوت حجاری شده ای است, که بسیاری از باستان شناسان و دانشمندان علوم فضائی را به تعجب و تحسین وادار کرده است – این تابوت در سال 1952 توسط تیم کاوشگران پرفسور " البرتو روزلهالیر " بعد از گذشت 2 سال تلاش بی وقفه بدست امد . در کنار این تابوت انواع لوح های سنگی که وزن بعضی از انها بیش از 5 تن میباشد , بهمراه یک ماسک سنگی که با ظرافت بینظری ساخته شده است، بدست امد.پرفسور " ریماند کارتایر " باستان شناس نامی جهان که سالهای بسیاری صرف تحقیق و بررسی تمدنهای امریکای لاتین و بخصوص تمدن شگفت انگیز " مایا "ها کرده است, بعد از یک کار طاقت فرسا توانست رمز کتیبه ها و همچنین تابوت حجاری شده را پیدا کرده و انرا ترجمه نماید. کار پرفسور " ریماند کارتایر " چون طوفان سهمگینی بود که بر اندیشه دانشمندان امروزی ما تازیانه می زد – خبر بسیار حیرت انگیز و شگفت اور بود – مایاها هزاران سال پیش, از نیروی الکترو مغناطیس زمین با خبر بودند .

انها درک عمیقی از سیستم خورشیدی و پرتوهای حرارتی ان داشته اند . سئوالی که دانشمندان از خود میپرسیدند این بود : چگونه .؟!! مایاها از کجا به این دانش عظیم دست پیدا کرده بودند.؟ این سئوالی است که دانش امروز جوابی برای ان ندارد . متاسفانه بخش عظیمی از کتیبه ها "مایا"ها نابود شده است – اما همان اندک مدارک, دال بر دانشی می کنند که دانش امروز قادر به درک ان نیست .

وزن سنگهای بکار رفته در این بنای اسرار امیز هر کدام بیش از 25 تن میباشد – که بصورت باور نکردنی صیقل داده شده است - در اطراف این قعله اسرار امیز هیچ مدخل یا ورودی کشف نشده است. ایا " اینکا"ها بخود انهمه زحمت طاقت فرسا میدادند که یک بنای بی درب بسازند.؟!! یا انها میدانستند چگونه از این دیوارهای غول پیکر عبور کنند؟! همانطور که در بالا اشاره شد، توضیحات مفصلی از "اینکا"ها و "مایا"ها بارها بیان شده است و همانگونه که میدانید این قوم اسرار امیز خبرگان علوم ریاضیات – نجوم و ستاره شناسی بودند – "مایا"ها از چرخ استفاده نمیکردند – اما جاده های پهن و یکدست انها باستان شناسان را به این فکر انداخت که انها چه نیازی به این جاده های پهن داشتند؟! محاسبات بسیار دقیق ریاضی – ستاره شناسی و نجوم بینظیر از "مایا"ها تمدنی ساخته که بقول پرفسور "اریک فن دانکین" "مایاها" ربوتیک ترین تمدن جهان هستند.!! تمام زندگی و دانش انها از روی تقویم و برنامه شکل میگرفته است. تمام بناهای باشکوه از روی برنامه و تقویم مایائی ساخته شده است.!! چه کس این تقویم را در اختیار انها قرار داده است.؟!! سئوالی که هنوز پاسخی به ان داده نشده! در یک افسانه مایائی بنام "پوپول وه " اینچنین میگوید : خدایان قادر به شناختن و دانستن همه چیز بودند, کیهان و چهار جهت اصلی – قطب های زمین و همچنین گرد بودن شکل زمین را میدانسته اند.!! چگونه اجداد "مایا"ها از گرد بودن زمین باخبر بودند؟!

حال به بحث محاسبات ریاضی مایاها در نجوم میپردازیم:

انان نه تنها صاحب یک تقویم افسانه ای بودند بلکه محاسبات باور نکردنی هم انجام داده اند که تا امروز چون یک معما حل نشده است . انان می دانستند که سال زهره 584 روز است و مدت سال زمینی را هم در حدود 2410و 365 روز محاسبه کرده اند ( محاسبه دقیق امروزی عدد 2422و 365 است) – محاسبات مایائی به 64 میلیون سال پیش برمیگردد .نوشته های دیگر در جزئیاتی بحث میکند که قریب به 400 میلیون سال قدمت دارد . این فرمولهای مشهور زهره ای را- تنها میتوان با یک کامپیوتر امروزی محاسبه کرد . به هر تقدیر بسیار مشگل است که منشاء این حقایق را از مردمانی جنگل نشین که بسیاری انها را وحشی میدانند بدانیم . فرمول مشهور نجومی "مایا"ها از قرار زیر است : تزولکین 260, سال زمینی 365 و سال زهره ای 584 روز است . این اعداد ظاهرا حاصل یک تقسیم ساده عجیب را, پنهان نگاه میدارند . اما 365 مساوی حاصل ضرب 73 در 5 و584 مساوی حاصل ضرب 73 در 8 است . 960 37 = 73 × 2 × 260 = 73 × 2 × 13 × 20 ماه 960 37 = 73 × 5 × 104= 73 × 5 × 13 × 8 خورشید960 37 = 73 × 8 × 65 = 73 × 8× 13× 5 زهره به عبارت دیگر تمام این ادوار بعد از 37960 روز با هم تقارون پیدا می کنند . اساطیر مایائی مدعی است که بعد از این ,خدایان به محل استراحتگاه بزرگ خود باز خواهند گشت . براستی این محاسبات پیچیده – شگفت انگیز نیست .؟!! در مدت 8 سال زمینی – زهره 13 بار به دور خورشید میگردد و این محاسبات را "مایا"ها به شکل بینظیری انجام داده اند

رابطه ریاضی فاصله سیارات تا خورشیدسال 1766 میلادی، یوهان تیتوس منجم آلمانی توانست رابطه ساده ای بیابد که با استفاده از آن می شد فاصله سیارات از خورشید را بدست آورد. چند سال بعد نیز دیگر منجم هموطن او، یوهان الرت بُد، این رابطه را مستقلا" دوباره کشف کرد.البته این رابطه را هر دو از طریق بازی با اعداد بدست آوردند و بدست آوری آن رابطه پایه علمی نداشت. امروزه این رابطه به رابطه تیتوس_بُد مشهور است. این رابطه بدین صورت است:

فاصله سیاره از خورشید(بر حسب فاصله متوسط زمین از خورشید)=0.4+)0.3*n(• n=1,2,4,8,.....• اعداد بدست آمدهبا دقت خوبیبا فاصله واقعی سیارات هم خوانی داشت:برای فاصله 2.8 برابر فاصله زمین از خورشید در آن زمان سیاره ای یافت نشده بود. بسیاری از اخترشناسان عقیده داشتند که سیاره ای کوچک در این فاصله بین مریخ و مشتری وجود دارد که کشف نشده است. جستجوی منظم نوار دایرِةالبروج برای یافت این سیاره مفقود از اواخر قرن هجدهم شروع شد و سرانجام در اولین روز قرن نوزدهم، یک منجم ایتالیایی به نام جوزپه پیاتزی، موفق شد جسم کوچکی را در حدود این فاصله از خورشید بیابد که آن را سِرِس نامید. بعد از آن نیز اجرام دیگری با همین فاصله از خورشید کشف شدند. اخترشناسان آن دوران این نظریه را پیش کشیدند که در آن فاصله از خورشید، بجای یک سیاره، تعداد زیادی سیارک وجود دارد که با کشف تعدادزیادی از این سیاکها در سالهای بعد این نظریه تایید شد.در حقیقت رابطه تیتوس_بُد محرک اصلی کشف سیارکها بود.

سالها بعد نیز سیاره اورانوس کشف شد که فاصله اش با فاصله پیشبینی شده توسط رابطه تیتوس_بُد نیز می خواند!(19.6 بنابر رابطه و 19.9 بنابر اندازه گیری). اما فاصله سیارات بعدی نپتون و پلوتو در این رابطه صدق نمی کنند. امروزه نظریه ای که به نظریه واهلش دینامیکی(Dynamical Relaxation) موسوم است توضیحی برای این رابطه یافته است. بنا به این نظریه، سیارات نخست در مدارات متفاوت تکوین یافتند؛ اما سپس به مداراتی منتقل شدند که نیروهای اغتشاشی گرانشی دیگر سیارات را به حداقل برسانند. نتیجه این کار از نظر ریاضی به روابطی شبیه رابطه تیتوس_بُد منجر می شود.

سیارات:عطارد    زهره     زمین    مریخ    ؟؟؟؟    مشتری    زحلجواب رابطه تیتوس-بد:               0.4       0.7       1.0     1.6      2.8      5.2       10

فاصله واقعی از خورشید :         0.39      0.72      1.0  1.52      ؟؟؟؟    5.20      9.54........

نجوم از صفر تا بی نهایت

علم کیهان شناسی:

کیهان شناسی شاخه‌ای از علم ستاره شناسی است که به مطالعه آغاز ساختار کلی و تکاملی جهان میپردازد. ستاره شناسان با استفاده از علم ریاضی‏‏‏‏ الگوهایی فرضی از جهان ساخته و مشخصات این الگوها را با جهان شناخته شده مقایسه میکنند. کیهان شناسی ، گذشته ، حال و آینده کائنات را بررسی میکند. کائنات تمام چیزهای موجود در عالم را شامل میشود: چه مرئی باشد چه نامرئی ، چه کشف شده باشد چه کشف نشده باشد

تاریخچه و سیر تحولی کیهان شناسی

• اقلیدس ، ریاضیدان یونانی ، (حدود 300 سال قبل از میلاد) ، با استفاده از سه بعد طول ، عرض و ارتفاع ، فضا را تعریف کرد. تعریفی که اسحاق نیوتن (1727 - 1643) ، فیزیکدان و ریاضیدان انگلیسی ، از جهان ارائه داد. مطابق با نظریات اقلیدس بود . فضایی لایتناهی که با استفاده از سه بعد طول ، عرض و ارتفاع تعریف می شد. اما نظریه فضای لایتناهی عاری از مشکل نیست. طبق قضیه اولبرس که از نام ستاره شناس آلمانی ، ویلهلم اولبرس (1840 - 1758) گرفته شده ، اگر ستارگان به یک شکل در تمام فضای لایتناهی پراکنده شوند، در تمامی جهات ستارهای وجود خواهد داشت. اگر چیزی در مسیر ستارگان دور دست قرار نگیرد تمام آسمان درخشندگی خورشید را خواهد داشت که عملا چنین نیست. آلبرت انیشتین (1955 - 1879) ، دانشمند آمریکایی آلمانی تبار ، با ارائه نظریه نسبیت عام در سال 1915 مشکل نظریه نیوتن را حل کرد. آلبرت انیشتین نشان داد که فضا و ماده موجود در آن ، محدود اما نامحصور است (یک جهان دو بعدی به شکل سطح یک کره را تصور کنید، این جهان محدود خواهد بود اما هیچ لبه یا حصاری نخواهد داشت). جهان محدود اما نامحصور آلبرت انیشتین ، ساکن است اما به آسانی می‌تواند منبسط یا منقبض شود. نظریه انبساط جهان با کشفی که ادوین هابل (1953 - 1889) ، ستاره شناس آمریکایی ، به عمل آورد، قوت گرفت. او دریافت که کهکشانها در حال حرکت در جهان هستند. او همچنین متوجه شد که کهکشانهای دورتر ، سریعتر از کهکشانهای نزدیکتر حرکت میکنند. در سال 1931 ، ژرژ لومتر (1966 - 1894) ، دانشمند بلژیکی ، اعلام کرد که عامل این انبساط ، تجزیه خود بخود آنچیزیست که او اتم اولیه نامیده است (اتم اولیه یک ماهیت تنهاست که در برگیرنده تمام ماده و انرژی



خرید و دانلود مقاله درمورد ریاضیات و نجوم


تحقیق: تاریخ ریاضیات

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 41

 

تاریخ ریاضیات

مقدمه:

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.

شروع ریاضیات در یونان:قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.در اوایل قرن ششم ق.م. فیثاغورث(500-572 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.



خرید و دانلود تحقیق: تاریخ ریاضیات


توابع

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 6

 

در ریاضیات ، تابعرابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید.

مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.

تعریف تابع

در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولیدکند. برای مثال با فرض y=x2 باورودیهای 5- و 5 خروجی یکسان 25 راخواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.

به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند X

 

در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند.

ا این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.

فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.

تاریخچه تابع

نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.

چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.

ورودی تابع

ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با "W" نمایش می‌دهیم. (W = f(z

تعریف روی مجموعه‌ها

یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:



خرید و دانلود  توابع


تحقیق درباره. تاریخ ریاضیات

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 41

 

تاریخ ریاضیات

مقدمه:

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.

شروع ریاضیات در یونان:قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بی‌شکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع می‌نمود. نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و می‌توان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بی‌اساس است.در اوایل قرن ششم ق.م. فیثاغورث(500-572 قبل از میلاد) از اهالی ساموس یونان کم‌کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر هم‌آهنگی و نظمی که دارد اساس ومبدأ همه چیز می‌پنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن می‌توان بیان نمود. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل می‌دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز می‌داشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمی‌داند به اینجا قدم نگذارد». این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبت‌ها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و می‌توان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد. در این احوال اسکندر کشورها را یکی پس از دیگری فتح می‌کرد و هرجا را که بر روی آن انگشت می‌نهاد مرکزی از برای پیشرفت تمدن یونانی می‌شد. پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند. اکنون به زمانی رسیده‌ایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوق‌العاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند. در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانه‌ای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.



خرید و دانلود تحقیق درباره. تاریخ ریاضیات


تحقیق در مورد ریاضیات

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 8 صفحه

 قسمتی از متن .doc : 

 

ریاضیات

ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.

ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.

نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.

ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.

چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم. ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.

حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.

در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است. بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد. هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

دید کلی

پیشرفت ریاضیات به این جا نمی‌رسند که قضیه‌های تازه‌ای روی هم انباشته شود، بلکه این پیشرفت همراه با تغییر کیفی ریاضیات است. ولی این تغییر کیفی از راه شکست و نابودی نظریه‌های موجود به دست نمی‌آید بلکه از راه عمیق‌کردن و تعمیمی نظریه‌های موجود و از راه بوجود آمدن نظریه‌های تعمیم‌دهنده تازه که بر پایه پیشرفت‌های قبلی تدارک دیده شده است) صورت می‌گیرد.

دوره‌های اساسی تاریخ ریاضیات

با یک نظر کلی در تاریخ ریاضی ، می‌توان چهار دوره اساسی که از جنبه‌های کیفی با هم اختلاف دارد تشخیص داد. البته مرزبندی دقیق این دوره‌ها ممکن نیست، زیرا مرزهای اساسی هر یک از آنها کم و بیش به تدریج به وجود آمده است، ولی اختلاف این دوره‌ها و عبور از یک دوره به دوره دیگر به خوبی مشخص است.

نخستین دوره

نحستن دوره ، عبارت از دوره‌ای است که ضمن آن ریاضیات به عنوان یک دانش مستقل و نظری به وجود آمد. ان دوره از زمان‌های باستانی آغاز و به سده پنجم پیش از میلاد پایان می‌پذیرد و این به شرطی است که ریاضیات "خالص" و بستگی منطقی بین قضیه‌ها و اثبات آنها ، زودتر از آن ، در یونان به وجود نیامده باشد (در سده پنجم پیش از میلاد ، حکمهای منظم هندسی مثل "مقدمات" بقراط(= هیپوکراتوس‌) خیوسی به وجود آمد). این دوره ، دوره شکل گرفتن حساب و هندسه است که ما به اندازه کافی آن را بررسی کردیم. در آن زمان ، ریاضیات ، از بستگی مستقیمی که قانون‌های جداگانه و منفرد آن ، با عمل داشتند به وجود آمد، قانون‌هایی که خود زاییده آزمایش‌اند، ولی هنوز به عنوان دستگاه واحدی که به صورت منطقی به هم مربوط باشد تشکیل نشده است. خصلت نظری‌بودن ریاضی که همراه با اثبات منطقی قضیه‌های آن باشد، خیلی به تدریج و متناسب با ماده‌های خام موجود ، به وجود آمد. حساب و هندسه هم از یکدیگر جدا نبود و به طور جدی به هم آمیخته بود.



خرید و دانلود تحقیق در مورد ریاضیات